吖啶类染料加烷化剂叫什么-吖啶酯化学发光的缺点

DNA分子的损伤类型有多种。UV照射后DNA分子上的两个相邻的胸腺嘧啶(T)或胞嘧啶(C)之间可以共价键连结形成环丁酰环,这种环式结构称为二聚体。胸腺嘧啶二聚体的形成是 UV对DNA分子的主要损伤方式。

Χ射线、γ射线照射细胞后,由细胞内的水所产生的自由基既可使DNA分子双链间氢键断裂,也可使它的单链或双链断裂。化学物中的博莱霉素、甲基磺酸甲烷等烷化剂也能造成链的断裂。

丝裂霉素C可造成DNA分子单链间的交联,这种情况常发生在两个单链的对角的鸟嘌呤之间。链的交联也往往带来DNA分子的断裂。

DNA 分子还可以发生个别碱基或核苷酸的变化。例如碱基结构类似物5-溴尿嘧啶等可以取代个别碱基,亚硝酸能引起碱基的氧化脱氨反应,原黄素(普鲁黄)等吖啶类染料和甲基氨基偶氮苯等芳香胺致癌物可以造成个别核苷酸对的增加或减少而引起移码突变(见基因突变)。

一种 DNA损伤剂往往可以同时引起几种类型的损伤,其损伤效应的大小和类型与剂量及细胞所处的周期状态有关。

物理化学生物因素引起基因突变的机制有什么区别?

指引起突变的化学物质。已知的有烷化剂、碱基类似物(base analog)、羟胺(hydroxylamine)、吖啶色素等。

常用化学诱变剂的种类及作用机制

(一)烷化剂

是栽培作物诱发突变的最重要的一类诱变剂。药剂带有一个或多个活泼的烷基。通过烷基置换,取代其它分子的氢原子称为"烷化作用"所以这类物质称烷化剂。

烷化剂分为以下几类:

1. 烷基磺酸盐和烷基硫酸盐

代表药剂:甲基磺酸乙酯(EMS)、硫酸二乙酯(DES)

2. 亚硝基烷基化合物

代表药剂:亚硝基乙基脲(NEH)、N-亚硝基-N-乙基脲烷(NEU)

3. 次乙胺和环氧乙烷类

代表药剂:乙烯亚胺(EI)

4. 芥子气类

氮芥类、硫芥类

烷化剂的作用机制--烷化作用 作用重点是核酸,导致DNA断裂、缺失或修补。

(二)核酸碱基类似物

这类化合物具有与DNA碱基类似的结构。

代表药剂:

5-溴尿嘧啶(BU)、5-溴去氧尿核苷(BudR) 为胸腺嘧啶(T)的类似物

2-氨基嘌呤(AP) 为腺嘌呤(A)的类似物

马来酰肼(MH) 为尿嘧啶(U)的异构体

作用机制:作为DNA的成份而渗入到DNA分子中去,使DNA复制时发生配对错误,从而引起有机体变异。

(三)其它诱变剂

亚硝酸 能使嘌呤或嘧啶脱氨,改变核酸结构和性质,造成DNA复制紊乱。HNO2还能造成DNA双链间的交联而引起遗传效应。

叠氮化钠(NaN3) 是一种呼吸抑制剂,能引起基因突变,可获得较高的突变频率,而且无残毒。

基因突变的三种类型是什么?

物理、化学、生物因素引起基因突变的机制有区别B.基因突变不一定会引起基因所携带的遗传信息的改变C.基因碱基对的缺失、增添、替换方式中对性状影响最小的一定是替换D.基因突变的方向与环境变化有明确的因果关系,为进化提供最初原材料人教版必修2第81页,"人们逐渐发现,易诱发生物发生基因突变并提高突变频率的因素可分为三类:物理因素、化学因素和生物因素。例如,紫外线、X射线及其他辐射能损伤细胞内的DNA;亚硝酸、碱基类似物等能改变核酸的碱基;某些病毒的遗传物质能影响宿主细胞的DNA等。”合肥一模试题大家分析教师用书:诱发基因突变的因素及其作用机理(1)物理诱变因素在多种物理诱变因素中,应用最广泛并且行之有效的是射线。用于诱变的射线包括电离射线和非电离射线。在诱变研究中,X射线、γ射线、α射线、β射线和中子等都是人们常用的电离射线。最早用于诱变的电离射线是X射线,后来人们发现γ射线的诱变效果比较好,于是γ射线成为人工诱变的首选射线。近年来,人们发现中子的诱变效果也很好,用中子进行诱变的研究日趋增多。电离辐射作用于生物体时,首先从细胞中各种物质的原子或分子的外层击出电子,引起这些物质的原子或分子的电离和激发。当细胞内的染色体或DNA分子在射线的作用下产生电离和激发时,它们的结构就会改变,这是电离辐射的直接作用。此外,电离辐射的能量可以被细胞内大量的水吸收,使水电离,产生各种游离基团,游离基团作用于DNA分子,也会引起DNA分子结构的改变。研究表明,电离辐射诱发基因突变的频率,在一定范围内和辐射剂量成正比;电离辐射有累加效应,小剂量长期照射与大剂量短期照射的诱变效果相同。紫外线携带的能量很小,穿透力弱,不足以引起物质的电离,属于非电离射线。物质吸收紫外线后,其组成分子由于电子的激发而变成激发分子,结果极易引起分子结构的改变。在紫外线的照射下,DNA分子可能发生多种形式的结构改变,如DNA链的断裂、DNA分子内或分子间交联、DNA和蛋白质交联、胞嘧啶水合作用以及形成嘧啶二聚体等,这些变化都有可能引起基因突变,其中形成嘧啶二聚体(如胸腺嘧啶二聚体)是引起突变的主要原因。例如,DNA双链之间胸腺嘧啶二聚体的形成,会阻碍双链的分开和下一步的复制。同一条链上相邻胸腺嘧啶之间二聚体的形成,会阻碍碱基的正常配对和腺嘌呤的正常加入,使复制在这个点上停止或发生错误,于是新形成的链上便出现改变了的碱基顺序,在随后的复制过程中就会产生一个在两条链上碱基顺序都改变了的分子,从而导致基因突变。(2)化学诱变因素一些化学物质和辐射一样能够引起生物体发生基因突变。通过对上千种化学物质的诱变作用进行研究,发现从简单的无机物到复杂的有机物,金属离子、生物碱、生长刺激素、抗生素、农药、灭菌剂、色素、染料等都可以诱发突变,但是诱变效果好的种类并不多。根据化学诱变剂对DNA作用方式的不同,可以将它们分为以下三类。一类是能够改变DNA化学结构的诱变剂,如亚硝酸和烷化剂等。亚硝酸具有氧化脱氨作用,它能使腺嘌呤(A)脱去氨基变成次黄嘌呤(H),胞嘧啶(C)脱去氨基变成尿嘧啶(U)。在DNA分子第一次复制时,H与C配对,U与A配对。第二次复制时,C与G配对,A与T配对。于是,经过两次复制,原来的A—T碱基对就变成了G—C碱基对,而G—C碱基对却变成了A-T碱基对。常见的烷化剂有硫酸二乙酯、乙烯亚胺、甲基磺酸乙二酯、亚硝基甲基脲等。烷化剂有一个或几个不稳定的烷基,能够与DNA分子的碱基发生化学反应,置换其中某些基团的氢原子,从而改变碱基的化学结构,使DNA分子复制时出现碱基配对的差错,最终导致基因突变。一类是碱基类似物,它们的分子结构与DNA分子中的碱基十分相似。在DNA分子复制时,这些碱基类似物能够以假乱真,作为DNA的组成成分加入到DNA分子中,从而引起基因突变。常见的碱基类似物有5-溴尿嘧啶、2-氨基嘌呤等。还有一类是吖啶类化合物,它们可以插入DNA分子结构中,使DNA分子在复制或转录时出现差错而导致突变。

基因突变一共有四种类型:

1、碱基置换突变(subsititution)

指DNA分子中一个碱基对被另一个不同的碱基对取代所引起的突变,也称为点突变(point mutation)。点突变分转换和颠换两种形式。如果一种嘌呤被另一种嘌呤取代或一种嘧啶被另一种嘧啶取代则称为转换(transition)。

嘌呤取代嘧啶或嘧啶取代嘌呤的突变则称为颠换(transversion)。由于DNA分子中有四种碱基,故可能出现4种转换和8种颠换(见上图)。在自然发生的突变中,转换多于颠换。

碱基对的转换可由碱基类似物的掺入造成。例如,5-溴尿嘧啶(5-bromouracil,BU)是一种与胸腺嘧啶类似的化合物,具有酮式和烯醇式两种结构,且两者可以互变,一般酮式较易变为烯醇式。

当DNA复制时,酮式BU代替了T,使A-T碱基对变为A-BU;第二次复制时,烯醇式BU能和G配对,故出现G-BU碱基对;第三次复制时,G和C配对,从而出现G-C碱基对,这样,原来的A-T碱基对就变成G-C碱基对。

碱基对的转换也可由一些化学诱变剂诱变所致。例如,亚硝酸类能使胞嘧啶(C)氧化脱氨变成尿嘧啶(U),在下一 次复制中,U不与G配对,而与A配对;复制结果C-G变为T-A(见右图)。

又如,烷化剂中的芥子气和硫酸二乙酯可使G发生乙基化,成为烷基化鸟嘌呤(mG),结果,mG不与C配对,而与T配对,经过复制,G-C变为A-T。

2、移码突变(translocation)

指DNA片段中某一位点插入或丢失一个或几个(非3或3的倍数)碱基对时,造成插入或丢失位点以后的一系列编码顺序发生错位的一种突变。它可引起该位点以后的遗传信息都出现异常。发生了移码突变的基因在表达时可使组成多肽链的氨基酸序列发生改变。

从而严重影响蛋白质或酶的结构与功能。吖啶类诱变剂如原黄素、吖黄素、吖啶橙等由于分子比较扁平,能插入到DNA分子的相邻碱基对之间。如在DNA复制前插入,会造成1个碱基对的插入;若在复制过程中插入,则会造成1个碱基对的缺失,两者的结果都引起移码突变。

3、缺失突变(deletion)

基因也可以因为较长片段的DNA的缺失而发生突变。缺失的范围如果包括两个基因,那么就好象两个基因同时发生突变,因此又称为多位点突变。由缺失造成的突变不会发生回复突变。所以严格地讲,缺失应属于染色体畸变。

4、插入突变(insertion)

一个基因的DNA中如果插入一段外来的DNA,那么它的结构便被破坏而导致突变。大肠杆菌的噬菌体Mu-1和一些插入顺序(IS)以及转座子(见转座因子)都是能够转移位置的遗传因子,当它们转移到某一基因中时,便使这一基因发生突变。

许多转座子上带有抗药性基因,当它们转移到某一基因中时,一方面引起突变,另一方面使这一位置上出现一个抗药性基因。插入的DNA分子可以通过切离而失去,准确的切离可以使突变基因回复成为野生型基因。这一事件的出现频率并不由于诱变剂的处理而提高。