吖啶橙染色剂高温挥发-吖啶橙染色需要固定吗?

已知的有烷化剂、碱基类似物(base analog)、羟胺(hydroxylamine)、吖啶色素等. 常用化学诱变剂的种类及作用机制 (一)烷化剂 是栽培作物诱发突变的最重要的一类诱变剂.药剂带有一个或多个活泼的烷基.通过烷基置换,取代其它分子的氢原子称为"烷化作用"所以这类物质称烷化剂. 烷化剂分为以下几类: 1. 烷基磺酸盐和烷基硫酸盐 代表药剂:甲基磺酸乙酯(EMS)、硫酸二乙酯(DES) 2. 亚硝基烷基化合物 代表药剂:亚硝基乙基脲(NEH)、N-亚硝基-N-乙基脲烷(NEU) 3. 次乙胺和环氧乙烷类 代表药剂:乙烯亚胺(EI) 4. 芥子气类 氮芥类、硫芥类 烷化剂的作用机制--烷化作用 作用重点是核酸,导致DNA断裂、缺失或修补. (二)核酸碱基类似物 这类化合物具有与DNA碱基类似的结构. 代表药剂: 5-溴尿嘧啶(BU)、5-溴去氧尿核苷(BudR) 为胸腺嘧啶(T)的类似物 2-氨基嘌呤(AP) 为腺嘌呤(A)的类似物 马来酰肼(MH) 为尿嘧啶(U)的异构体 作用机制:作为DNA的成份而渗入到DNA分子中去,使DNA复制时发生配对错误,从而引起有机体变异. (三)其它诱变剂 亚硝酸 能使嘌呤或嘧啶脱氨,改变核酸结构和性质,造成DNA复制紊乱.HNO2还能造成DNA双链间的交联而引起遗传效应. 叠氮化钠(NaN3) 是一种呼吸抑制剂,能引起基因突变,可获得较高的突变频率,而且无残毒. 以下是具体的使用方法,希望对你有点作用! 化学诱变剂的剂量主要决定于其浓度和处理时间. 化学诱变剂都具毒性,其中90%以上是致癌物质或极毒药品,使用时要格外小心,不能宜接用口吸,避免与皮肤直接接触,不仅要注意自身安全,也要防上污染环境,造成公害. 一、碱基类似物用于诱发突变的碱基类似物有5-BU、5-FU、BUdr、5-IU等他们是胸腺嘧啶的结构类似物,AP、6-MP是腺嘌呤的给、结构类似物.最常用是5-BU和AP. 当将这类物质加人到培养基中,在繁殖过程中可以掺人到细菌DNA分子中,不影响DNA的复制.它们的诱变作用是取代核酸分子中碱基的位置,再通过DNA的复制,引起突变,困此,也叫掺人诱变剂.显然这一类诱变剂要求微生物细胞必顿处在代谢的旺盛期,才能获得最佳的诱变效果. (一)碱基类似物的诱变机制正常的碱基存在着同分异构体,互变异构现象在嘧啶分子中以酮式和烯醇式的形式出现,而嘌呤分子中以氨基和亚氨基互为变构的形式出现、一般互变异构现象在碱基类似物中比正常DNA碱基中频率更高. 5-BU 导致A:T碱基对转换为GC碱基 2-氨基嘌呤也可以诱发DNA分子中A:T- G:C或G:C- A:T的转换. (二)碱基类似物的诱变处理方法(以5-BU为例) 1.单独处理将微生物液体培养到对数期.离心除去培养液,加入生理盐水或缓冲液.饥饿培养8-10h,消耗其体内的贮存物质、将5-BU加入到经饥饿培养的培养液中,处理浓度为25-40ug/ml,温合均匀.取0.1-0.2ml菌悬液加人到琼脂培养基上涂布培养.在适宜温度下,使之在生长过程中诱变处理.培养后挑取单菌落,进行筛选.如果是处理真菌、放线菌孢子,则要提高5-BU的浓度,常处理浓度为 0.1mg/ml. 2.与辐射线复合处理据报道;如果菌体先用5-BU等碱基类似物进行处理,使它们首先渗人到DNA分予中,然后用辐射线照射,诱变效果会比单独使用射线要好.因此碱基类似物也是一种辐射诱变的增敏剂.从而提高突变率. 二、烷化剂(一)烷化剂的作用机制烷化剂分单功能烷化剂和双功能或多功能烷化剂两大类.前者仅一个烷化基团,对生物毒性小,诱变效应大.后者具有两个或多个烷化基团,毒性大,致率高,诱变效应较差.主要原因是双功能烷化剂有硫芥、氮芥. 烷化剂主要是通过烷化基团使DNA分子上的碱基及磷酸部分烷化,DNA复制时导致碱基配对错误而引起突变,碱基中容易发生烷化作用的是嘌呤类.其中鸟嘌呤N7是最易起反应的位点,几乎可以和所有烷化剂起烷化作用;此外,DNA分子中比较多的烷化位点是鸟嘌呤O6和胸腺嘧啶O4,这些可能都是引起突变的主要位点.其次引起烷化的位点是鸟嘌呤N3、腺嘌呤N2,腺嘌呤N7和胞嘧啶N3.这些位点引起碱基置换的仅占烷化作用的10%左右.因此,由这些位点改变所引起的突变仅是少数. 烷化剂也能造成磷酸和核糖之间的共价键断裂,而造成突变. (二)烷化剂的性质溶液烷化剂的性质比较活泼,不太稳定,在水溶液中容易发生分解.它们大部分半衰期很短,其长短与温反、溶液PH关系很大.因此,化学诱变剂要现用现配还要避光.配制烷化剂时,要采用合适的出缓冲液. 有毒! (三)常用的烷化剂亚硝基胍(NTG) **晶体物质,性质不稳定,容易光解,**变为绿色时,诱变效应际低. 有超诱变剂之称,常用缓冲溶液有磷酸缓冲液和Tri缓冲液. 诱变处理方法: ①用一定值的磷酸缓冲液或Tri缓冲液洗制成菌悬液.②NTG母液:配制需加助溶剂甲酰胺或丙酮少许,然后加缓冲液,其比例为缓冲液9ml:NTG丙酮溶液lml,浓度为NTG 1mg/ml ;使用时取母液0.2ml + 菌悬液1.8ml,NTG终浓度为100ug/ ml.一般随菌种不同而异,细菌一般为100-1000 ug/ ml,放线菌、真菌为l000-3000 ug/ ml.③放线菌在生长适宜的温度下培养,(细菌30-35℃、真菌25-28℃、放线菌30-32℃)处理若干时间,一般细菌20-60min,孢子90-120 min④终止反应.冷的生理盐水50倍稀释处理,或经过离心洗涤处理,作一定稀释度分离于平皿.如果是细菌,把后培养基按一定浓度加入到菌体沉淀物中,振荡培养1.5-2h,经2-3次细胞分裂,再涂平皿. 处理完毕后,马上把接触过NTG的器皿用NaOH浸泡处理. NTG除以上直接以溶液处理外,还可以按以下方法诱变处理,摇瓶振荡处理:在接菌后的培养基中加人5-10 ug/ ml NTG.并加几滴吐温60或吐温80,使成乳化状(注意吐温对该菌生长是否有影响);在平皿上生长过程处理:如果将NTG、琼脂和菌体混合制成平板,NTG浓度为10-50 ug/ ml.或将琼脂培养基制成平板.然后将NTG和菌体混合涂抹平析,此时NTG浓度为10-20 ug/ ml. 经后培养的培养液.除部分进行平皿分离外.剩余的培养液可以加人适量的药物,保存于冰箱内数天.如日本有人把经过NTG处理后的大肠杆菌培养液,用50%甘油(最终浓度为12.5%)于-40℃、-80℃保存.在以后数天内随时可取出融化,稀释分离,突变体亡很少. 据报道.无论是用辐射处理,还是用化学诱变剂处理后的菌悬液或后增养液,浸在冰浴中2-3h,试验的重复性很好.认为在大肠杆菌、枯草杆菌和放线菌等可以采取这一措施来提高诱变效果. NTG是一种强烈致癌物质,操作时要带橡皮手套,穿工作服,带口罩,用称量瓶称量,最好在通风橱中进行.凡接触过NTG的器皿必须及时、单独处理,例用自来水大量冲洗或用1-2N的NaOH浸泡过夜,洗净. 2.甲基磺酸乙酯(简称EMS)甲基磺酸乙酯是磺酸酯类中诱变效果较好的一种烷基化合物,外观呈粉末状或无色液体,难溶于水,不稳定,易水解成无活性物质. EMS的诱变处理方法: ① EMS 母液的配制:为了安全和防上失效,配制前将需用的器皿,置冰箱内预冷,然后在冰浴中进行配制.取0.5ml EMS原液,加人到10 ml pH7.2磷酸缓冲液中,加盖,并轻轻转动试管.由于在水溶液中易失效,故尽可能低温保藏,并要现用现配. ②取新鲜的菌体,经前培养至对数期.离心洗涤,用缓冲液制成8 ml菌悬液(107-108ml-1).对于丝状菌孢子,则前培养至萌动期,悬液含 106 ml-1. ③取EMS母液2ml,加人到以8ml的菌悬液中.在适宜温度下处理一定时间(根据预实验绪果确定).处理的最终浓度为0 .lmol/L.对于真菌孢子,则为0.2-0.5rnol/L. ④EMS处理一定时间后,用50倍生理盐水稀释或加入一定量的2%NaS2O3溶液或多次离心、洗涤,以终止反应. EMS是剧毒的诱变剂,在整个诱变过程,包括配制药品、操作处理、保存等都要严守安全,不能接触皮肤,所有接触过EMS的器皿,单独用大量水冲洗洗涤,或用10%NaS2O3溶液浸泡过夜,再用清水冲洗干净. 三、脱氨剂亚硝酸是一稀常用的诱变剂,毒性小.不稳定,易挥发.其钠盐易在酸性缓冲液中产生NO和NO2 (一)亚硝酸的诱变机制脱去碱基中的氨基变成酮基,引起转换而发生变异.A→H,C→U,G→X. A:T→G:C和G:C→A:T.亚硝酸的诱变也可以发坐回复突变. 亚硝酸除了脱氨基作用外,还可引起DNA交联作用,DNA复制,从而导致奕变. (二)亚硝酸的处理方法 1.试剂的配制(1)1mol/L pH4.5醋酸缓冲液(2)0.1mol/L亚硝酸钠溶液(3)0.07mol/L pH8.6磷酸氢二钠溶液以上试剂用前均要灭菌. 2.处理方法取孢子悬液1 ml,pH4.5醋酸缓冲液2ml及硝酸钠溶液lml,最后处理浓度为0.025 mol/L ;25-26℃保温10-20min,加入的磷酸氢二钠溶液 20 ml,使出下降至pH 6. 8左右,以终止反应.稀释分离于平板. 如果是处理细菌,亚硝酸最后浓度以0.05 mol/L. 在亚硝酸处理菌体或孢子时要严格控制好温度,否则会影响诱变效果. 四、移码诱变剂移码诱变剂与DNA相互结合引起碱基增添或缺失而造成突变.它们主要包括吖啶黄、吖啶橙、ICR-171、ICR-191等.移码诱变剂对噬菌体有强烈的诱变作用,诱发细菌、放线菌的质粒脱落比其他诱变剂效果更为显著.如某些产生抗生素的放线菌.用处理后,发现产量明显下降,主要就是由于控制抗生素合成的质粒脱落造成的. 吖啶黄的性质和使用方法:淡**晶体,微溶于热水,溶于乙醇和,不稳定,见光易分解. 使用时,先用少许乙醇溶解,配成一定浓度的母液.通常处理方法是特它们加入培养基中,使最后浓度为10-50ug/ml,混合后制成平板,适温培养,在生长过程中处理.另外还可将吖啶黄加人到培养液中,浓度为10-20 ug/ml ,在适温条件下,振荡培养过程中处理. 五、羟化剂以羟胺为例羟胺的简称HA,常以盐酸羟胺形式存在,为白色晶体,溶于水,不稳定易分解,具腐蚀性. 1.羟胺的诱变机制当羟胺浓度为0.1-1.0mol/L pH6.0时,主要与胞嘧啶反应,使羟化的C与A配对,在0.1-1.0mol/L pH9.0,羟胺可以与鸟嘧啶反应,10-3 mol/L时,羟胺可以与胸腺嘧啶、鸟嘌呤和尿嘧啶起反应.但据分析,羟胺与T、G反应的是它的产物,而不是它本身.此外,羟胺有时还能和细胞中其他物质作用产生过氧化氯,也具有诱变作用. 2.羟胺的处理方法常用浓度为0.1%-5%,可直接在溶液中处理,时间1-2h,然后分离培养.但一般都加到琼脂平板或振荡培养基中.然后接入孢 子或细菌,在适温下培养,生长过程中处理.所用浓度比直接处理时低些. 六、金属盐类用于诱变育种的金属盐类主要有氯化锂、硫酸锰等.其中氯化理比较常用,与其他诱变剂复合处理,效果相当显著. 氯化锂称之为助诱变剂,氯化锂是白色粉末,易溶于水,使用时通常加到培养基中. 为了速免受破坏.倒平板时,当培养基温度冷却到50-60℃时才加入制成平板,然后把细菌或孢子涂布分离,处理终浓度为0.3%-1.5%. 七、其他化学诱变剂 1.秋水仙素秋水仙碱是诱发细胞染色休多倍体的诱变剂.秋水仙碱的主要作用是破坏细胞有丝分裂过程中纺锤丝的形成.导致多倍体的产生. 2.抗生素作为诱变剂的抗生素主要有链黑霉素、争光霉素、丝裂霉素、放线菌素、光辉霉素和阿霉素等.这些抗生素都是抗癌药物,它们在微生物育种中虽有应用,但效果不如烷化剂等诱变剂显著,应用并不广泛.一般不单独使用,常与其他诱变剂一起复合使用. 八、直视化学诱变剂的操作安全化学诱变剂多数是极毒的致癌药品,在进行诱变操作后的处置以及诱变剂的保藏等方面的安全防护都是极其重要的.如有疏忽,就可能对健康和环境带来恶果,万万不可麻痹.

观察dna和rna在细胞中的分布

荧光显微镜下观察:凋亡细胞体积缩小,呈现核固缩,沿核膜呈点状、新月状或杆状,镜下可见四种细胞形态:活细胞,核染色质着绿色并呈正常结构;早期凋亡细胞,核染色质着绿色但呈固缩状;非凋亡的亡细胞,核染色质着橘红色并呈正常结构;晚期凋亡细胞,核染色质着橘红色但呈固缩状。因为有早期凋亡(绿色)和晚期凋亡细胞(橘红色)!

核酸染色剂会不会影响marker条带

观察dna和rna在细胞中的分布的回答如下:

观察DNA和RNA在细胞中的分布是一项重要的实验技术,通常使用染色技术来实现。以下是观察DNA和RNA在细胞中分布的一般步骤和拓展知识:

一般步骤:

收集细胞样本:选择适合的细胞样本,如人体或动物的器官组织,或者癌细胞系等。

细胞固定:将细胞样本固定在适当的缓冲液中,以停止细胞活动并保持细胞结构。

细胞包埋:将固定后的细胞样本包埋在石蜡或冰冻保护剂中,以便长期保存。

切片制备:将包埋的细胞样本切成薄片,以便在显微镜下观察。

染色:将切片用特定的染色剂染色,以便能够更清晰地观察DNA和RNA的分布。

观察:将染色后的切片放在显微镜下观察,通过不同波长的光线照射观察DNA和RNA的分布。

拓展知识:

核酸的基本结构:DNA和RNA都是核酸,它们都是由核苷酸组成的线性大分子。DNA由脱氧核糖核苷酸组成,而RNA由核糖核苷酸组成。

DNA和RNA的功能:DNA是细胞内遗传信息的载体,它包含了生物体遗传信息的所有信息。RNA是DNA表达的重要媒介,它可以从DNA中转录出蛋白质编码序列,并在蛋白质合成过程中起到关键作用。

染色剂的原理:在观察DNA和RNA的分布实验中,通常使用的染色剂包括荧光染料和吖啶橙等。这些染色剂可以与DNA或RNA特异性结合,并改变它们对光的吸收和发射特性,从而使它们的分布更加清晰可见。

实验注意事项:在实验过程中应该注意细胞样本的收集和固定,以及实验操作过程中的卫生问题。此外,染色剂的使用应该按照推荐的浓度和时间进行,避免过度染色或不足染色。

应用领域:观察DNA和RNA的分布实验在生物学、医学、遗传学等领域都有广泛的应用。例如,可以用于研究基因表达、癌症细胞的异常分裂增殖过程等。此外,还可以应用于法医学中的亲子鉴定等。

请详细解释一下DNA与RNA

1、溴化乙锭(ethidium bromide,EB)

最常用的核酸荧光染料,可嵌入核酸双链的配对碱基之间,在紫外线激发下,发出桔红色荧光.EB-DNA复合物中的EB发出的荧光,比游离的凝胶中的EB发出的荧光强度大10倍,因此无需洗净背景即可清楚观察核酸带型.若EB背景太深,可将凝胶 浸泡于1mmol/LMgSO4中1h或10mmol/L MgCl2中5min,使非结合的EB褪色,这 样可检查到10ng的DNA样品,EB也可用于检测单链DNA或RNA,但其对单链核酸的亲和力相对较小,荧光产率也相对较低.

在凝胶或电泳缓冲液中加入终浓度为0.5μg/ml的EB,染色可在电泳过程中进行,能随时观察核酸的迁移情况.但EB带正电荷,嵌入碱基后增加了 核酸分子的刚性,使迁移率减慢,故不宜用于测定核酸分子量的大小,这时应在电泳后将凝胶浸入0.5μg/ml的EB水溶液中10min进行染色.EB见光 易分解,应于4℃避光保存,

2、吖啶橙(acridine orange,AO):

吖啶橙可嵌入双链核酸碱基对之间,在254nm紫外线激发下发出530nm的绿色荧光;还通过静电与单链核酸的磷酸基结合,在254nm紫外线激发 下产生640nm的红色荧光.因此可区分单链和双链核酸,灵敏度分别为0.1μg和0.05μg.但吖啶橙的染色操作要求严格,应在 22℃,0.01mol/L磷酸钠缓冲液(pH7.0)中避光浸泡30min,然后在搪瓷盘中用该缓冲剂4℃脱色过夜或22℃脱色1~2小时.

3、银(Ag+)试剂:

Ag+与核酸形成稳定复合物,然后用甲醛使Ag+还原成银颗粒.AgNO3等试剂可使聚丙烯酰胺凝胶上的单链,双链DNA及 RNA都染成黑褐色.银染法的灵敏度比EB染色高200倍左右,比亚甲蓝染色高100~1000倍,在小于0.5mm厚的凝胶中,能检测出0.5ng的 RNA,其缺点是专一性不强,能与蛋白质,去污剂反应也产生褐色,而且对DNA的染色定量不准确.银与DNA稳定结合,对DNA有破坏作用,不适于DNA 片段回收的制备.

4、亚甲蓝(methylene blue)

可将RNA染成蓝色,但灵敏度不高,而且操作时间长.胶浸泡于0.02%的亚甲蓝,10mmol/L Tris-Ac(pH8.3),4℃放置1~2h,用净水洗5~8h(反复换水),带型肉眼可见,最低检测量为 250ng.

现在常用的核酸染料有哪几种

RNA与DNA最重要的区别一是RNA只有一条链,二是它的碱基组成与DNA的不同,RNA没有碱基T(胸腺嘧啶),而有碱基U(尿嘧啶)。所以导致他们有以下性质上的不同。

1.两性解离:DNA无,只有酸解离,碱基被屏蔽(在分子内部形成了H键)。RNA有,有PI。

2.粘度大:DNA;RNA,粘度由分子长度/直径决定,DNA为线状分子,RNA为线团。

3.碱的作用:DNA耐碱RNA易被碱水解。

4.显色反应:

鉴别DNA和RNA+浓HCl RNA ------→ 绿色化合物

DNA ------→ 蓝紫色化合物苔黑酚

二苯胺啡啶溴红(荧光染料)和溴嘧啶都可对DNA染色,原理是卡在分子中,DNA的离心和电泳显色可用它们。

DNA和RNA的鉴别染色

利用吖啶橙的变色特性可鉴别DNA和RNA。吖啶橙作为一种荧光染料已被用于染色固定,非固定细胞核酸,或作溶酶体的一种标记。观察亡细胞荧光变色性变化以及区别分裂细胞和静止细胞群体。虽然测定DNA和RNA含量时较难获得好的重复性结果,但该方法已被许多实验室广泛采用。

5.溶解性:都溶于水而不溶于乙醇,因此,常用乙醇来沉淀溶液中的DNA和RNA。DNA溶于苯酚而RNA不溶,故可用苯酚来沉淀RNA。

6.紫外吸收:核酸的λm=260nm,碱基展开程度越大,紫外吸收就越厉害。当A=1时,DNA:50ug/ml,RNA和单链DNA:40ug/ml,寡核苷酸:20ug/ml。用A260/A280还可来表示核酸的纯度。

7.沉降速度:对于拓扑异构体(核苷酸数目相同的核酸),其沉降速度从达到小依次为:RNA ; 超螺旋DNA > 解链环状DNA ; 松弛环状DNA ; 线形DNA也就是在离心管中最上层是线形DNA,最下面是RNA。

8.电泳:核苷酸、核酸均可以进行电泳,泳动速度主要由分子大小来决定,因此,电泳是测定核酸分子量的好方法。

9.DNA分子量测定最直接的方法:用适当浓度的EB(溴嘧啶)染色DNA,可以将其他形式的DNA变成线形DNA,用电镜测出其长度,按B-DNA模型算出bp数,根据核苷酸的平均分子量就可计算出DNA的分子量。

聚合酶链反应(Polymerase Chain Reaction ,PCR)是80年代中期发展起来的体外核酸扩增技术。它具有特异、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究 的目的基因或某一DNA片段于数小时内扩增至十万乃至百万倍,使肉眼能直接观察和判断;可从一根毛发、一滴血、甚至一个细胞中扩增出足量的DNA供分析研 究和检测鉴定。过去几天几星期才能做到的事情,用PCR几小时便可完成。PCR技术是生物医学领域中的一项革命性创举和里程碑。

PCR技术简史

PCR的最早设想 核酸研究已有100多年的历史,本世纪60年代末、70年代初人们致力于研究基因的体外分离技术,Korana于1971年最早提出核酸体外扩增的设想:“经过DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因”。

PCR的实现 1985年美国PE-Cetus公司人类遗传研究室的Mullis等发明了具有划时代意义的聚合酶链反应。其原理类似于DNA的体内复制,只是在试管中给 DNA的体外合成提供以致一种合适的条件---摸板DNA,寡核苷酸引物,DNA聚合酶,合适的缓冲体系,DNA变性、复性及延伸的温度与时间。

PCR的改进与完善 Mullis最初使用的DNA聚合酶是大肠杆菌DNA聚合酶I的 Klenow片段,其缺点是:①Klenow酶不耐高温,90℃会变性失活,每次循环都要重新加。②引物链延伸反应在37℃下进行,容易发生模板和引物之 间的碱基错配,其PCR产物特异性较差,合成的DNA片段不均一。此种以Klenow酶催化的PCR技术虽较传统的基因扩增具备许多突出的优点,但由于 Klenow酶不耐热,在DNA模板进行热变性时,会导致此酶钝化,每加入一次酶只能完成一个扩增反应周期,给PCR技术操作程序添了不少困难。这使得 PCR技术在一段时间内没能引起生物医学界的足够重视。1988年初,Keohanog改用T4 DNA聚合酶进行PCR,其扩增的DNA片段很均一,真实性也较高,只有所期望的一种DNA片段。但每循环一次,仍需加入新酶。1988年Saiki 等从温泉中分离的一株水生嗜热杆菌(thermus aquaticus) 中提取到一种耐热DNA聚合酶。此酶具有以下特点:①耐高温,在70℃下反应2h后其残留活性大于原来的90%,在93℃下反应2h后其残留活性是原来的 60%,在95℃下反应2h后其残留活性是原来的40%。②在热变性时不会被钝化,不必在每次扩增反应后再加新酶。③大大提高了扩增片段特异性和扩增效 率,增加了扩增长度(2.0Kb)。由于提高了扩增的特异性和效率,因而其灵敏性也大大提高。为与大肠杆菌多聚酶I Klenow片段区别,将此酶命名为Taq DNA多聚酶(Taq DNA Polymerase)。此酶的发现使PCR广泛的被应用。

PCR技术基本原理

PCR技术的基本原理 类似于DNA的 天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加 热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引 物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合 物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需 2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝。

PCR的反应动力学 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA 扩增量可用Y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%, 但在实际反应中平均效率达不到理论值。反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进 入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。大多数情 况下,平台期的到来是不可避免的。

PCR扩增产物 可分为长产物片段和短产物片段两部分。短产物片段的长度严格地限定在两个引物链5’端之间,是需要扩增的特定片段。短产物片段和长产物片段是由于引物所 结合的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中,以两条互补的DNA为模板,引物是从3’端开始延伸,其5’端是固定的,3’端则没 有固定的止点,长短不一,这就是“长产物片段”。进入第二周期后,引物除与原始模板结合外,还要同新合成的链(即“长产物片段”)结合。引物在与新链结合 时,由于新链模板的5’端序列是固定的,这就等于这次延伸的片段3’端被固定了止点,保证了新片段的起点和止点都限定于引物扩增序列以内、形成长短一致的 “短产物片段”。不难看出“短产物片段”是按指数倍数增加,而“长产物片段”则以算术倍数增加,几乎可以忽略不计, 这使得PCR的反应产物不需要再纯化,就能保证足够纯DNA片段供分析与检测用。

PCR反应体系与反应条件

标准的PCR反应体系:

10×扩增缓冲液 10ul

4种dNTP混合物 各200umol/L

引物 各10~100pmol

模板DNA 0.1~2ug

Taq DNA聚合酶 2.5u

Mg2+ 1.5mmol/L

加双或三蒸水至 100ul

PCR反应五要素: 参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+

引物: 引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。

设计引物应遵循以下原则:

①引物长度: 15-30bp,常用为20bp左右。

②引物扩增跨度: 以200-500bp为宜,特定条件下可扩增长至10kb的片段。

③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。

④避免引物内部出现二级结构,避免两条引物间互补,特别是3’端的互补,否则会形成引物二聚体,产生非特异的扩增条带。

⑤引物3’端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。

⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。

⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。

引物量: 每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。

酶及其浓度 目前有两种Taq DNA聚合酶供应, 一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。催化一典型的PCR反应约需酶量2.5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少。

dNTP的质量与浓度 dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性。dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris。HCL的缓冲液将其PH调节到7.0~7.5,小量分装, -20℃冰冻保存。多次冻融会使dNTP降解。在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配。浓度过低又会降低PCR产物的产量。dNTP能与Mg2+结合,使游离的Mg2+浓度降低。

模板(靶基因)核酸 模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本。 SDS的主要功能是: 溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀;蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀 核酸。提取的核酸即可作为模板用于PCR反应。一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接 用于PCR扩增。RNA模板提取一般采用异硫氰酸胍或蛋白酶K法,要防止RNase降解RNA。

Mg2+浓度 Mg2+对PCR扩增的特异性和产量有显著的影响,在一般的PCR反应中,各种dNTP浓度为200umol/L时,Mg2+浓度为1.5~2.0mmol/L为宜。Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少。

PCR反应条件的选择

PCR反应条件为温度、时间和循环次数。

温度与时间的设置: 基于PCR原理三步骤而设置变性-退火-延伸三个温度点。在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸。对于较短靶基因(长度为100~300bp时)可采用二温度点法, 除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度Taq DNA酶仍有较高的催化活性)。

①变性温度与时间:变性温度低,解链不完全是导致PCR失败的最主要原因。一般情况下,93℃~94℃lmin足以使模板DNA变性,若低于93℃则 需延长时间,但温度不能过高,因为高温环境对酶的活性有影响。此步若不能使靶基因模板或PCR产物完全变性,就会导致PCR失败。

②退火(复性)温度与时间:退火温度是影响PCR特异性的较重要因素。变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合。由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞。退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长 度。对于20个核苷酸,G+C含量约50%的引物,55℃为选择最适退火温度的起点较为理想。引物的复性温度可通过以下公式帮助选择合适的温度:

Tm值(解链温度)=4(G+C)+2(A+T)

复性温度=Tm值-(5~10℃)

在Tm值允许范围内, 选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性。复性时间一般为30~60sec,足以使引物与模板之间完全结合。

③延伸温度与时间:Taq DNA聚合酶的生物学活性:

70~80℃ 150核苷酸/S/酶分子

70℃ 60核苷酸/S/酶分子

55℃ 24核苷酸/S/酶分子

高于90℃时, DNA合成几乎不能进行。

PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合。PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够 的。3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min。延伸进间过长会导致非特异性扩增带的出现。对低浓度模板的扩增,延伸时间要稍长些。

循环次数 循环次数决定PCR扩增程度。PCR循环次数主要取决于模板DNA的浓度。一般的循环次数选在30~40次之间,循环次数越多,非特异性产物的量亦随之增多。

PCR反应特点

特异性强 PCR反应的特异性决定因素为:

①引物与模板DNA特异正确的结合;

②碱基配对原则;

③Taq DNA聚合酶合成反应的忠实性;

④靶基因的特异性与保守性。

其中引物与模板的正确结合是关键。引物与模板的结合及引物链的延伸是遵循碱基配对原则的。聚合酶合成反应的忠实性及Taq DNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度。再通过选择特异性和保守性高的靶基因区,其特异性程度就更高。

灵敏度高 PCR产物的生成量是以指数方式增加的,能将皮克(pg=10-12g)量级的起始待测模板扩增到微克(ug=10-6g)水平。能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR的灵敏度可达3个RFU(空斑形成单位);在细菌学中最小检出率为3个细菌。

简便、快速 PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应。扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广。

对标本的纯度要求低 不需要分离病毒或细菌及培养细胞,DNA 粗制品及总RNA均可作为扩增模板。可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等粗制的DNA扩增检测。 PCR扩增产物分析

PCR产物是否为特异性扩增 ,其结果是否准确可靠,必须对其进行严格的分析与鉴定,才能得出正确的结论。PCR产物的分析,可依据研究对象和目的不同而采用不同的分析方法。

凝胶电泳分析:PCR产物电泳,EB溴乙锭染色紫外仪下观察,初步判断产物的特异性。PCR产物片段的大小应与预计的一致,特别是多重PCR,应用多对引物,其产物片断都应符合预讦的大小,这是起码条件。

琼脂糖凝胶电泳: 通常应用1~2%的琼脂糖凝胶,供检测用。

聚丙烯酰胺凝胶电泳:6~10%聚丙烯酰胺凝胶电泳分离效果比琼脂糖好,条带比较集中,可用于科研及检测分析。

酶切分析:根据PCR产物中限制性内切酶的位点,用相应的酶切、电泳分离后,获得符合理论的片段,此法既能进行产物的鉴定,又能对靶基因分型,还能进行变异性研究。

分子杂交:分子杂交是检测PCR产物特异性的有力证据,也是检测PCR 产物碱基突变的有效方法。

Southern印迹杂交: 在两引物之间另合成一条寡核苷酸链(内部寡核苷酸)标记后做探针,与PCR产物杂交。此法既可作特异性鉴定,又可以提高检测PCR产物的灵敏度,还可知其分子量及条带形状,主要用于科研。

斑点杂交: 将PCR产物点在硝酸纤维素膜或尼膜薄膜上,再用内部寡核苷酸探针杂交,观察有无着色斑点,主要用于PCR产物特异性鉴定及变异分析。

核酸电泳染色剂有哪些

常用的核酸染料有:

1、EB染料

EB属于核酸分子嵌入剂,通常用于分子遗传学、DNA和染色质结构分析等研究中,特别是国内很多实验室仍在使用EB进行凝胶核酸电泳实验的染色。

EB是极易渗透细胞膜与胞内DNA嵌合的小分子,它具有平面共轭大环结构,是典型的DNA

分子插入试剂,菲啶环插入到DNA分子的碱基对之间,与DNA嵌合形成稳定的复合物,并影响DNA

的复制,破坏正常的遗传生理现象。EB作为诱变性的化合物,它在人体中诱导突变的机制是不可逆转的。

2、GoldView染料

GoldView(GV)是一种可代替溴化乙锭(EB)的新型核酸染料,其灵敏度与EB相当,使用方法与之完全相同。在紫外透射光下双链DNA呈现绿色荧光,也可用于RNA染色。

实质上,所谓的Goldview就是吖啶橙,也就是传说中的AO,有一种传统的细胞凋亡试验,采用的染料正是吖啶橙,也就是AO/EB染色试验,EB无法穿透完整的细胞膜,而AO可以穿过细胞膜染上细胞核,以此来区分凋亡和未凋亡的细胞。

3、GelRed 和 GelGreen染料

GelRed

和GelGreen

是两种集高灵敏、低毒性和超稳定于一身的极佳的荧光核酸凝胶染色试剂。其水溶染色剂通过美国环保局安全认定,废弃物可直接倒入下水道,而不会造成任何环境污染。

GelRed

和 GelGreen

的特殊化学结构使其难以穿透细胞膜进入细胞,正是这一特性降低了染料的细胞毒性。不过也正是因为如此,其价格大约是GoldView的十倍左右。

扩展资料

核酸染料的科研应用:

1、免疫分析

荧光标记的单克隆抗体技术为流式细胞仪在研究细胞膜和细胞内各种功能性抗原、肿瘤基因蛋白等领域扩展了无限的应用空间。

荧光探针可以通过蛋白质交联剂共价结合在单克隆抗体上。免疫荧光标记最常用的染料有异硫氰酸荧光素(fluorescein isothiocyanate, FITC)、藻红蛋白(PE)以及AlexaFluor系列染料等。

2、核酸检测

核酸荧光染料对细胞核染色后定量测量细胞所发出的荧光强度,就可以确定细胞核中DNA、RNA的含量,并可以对细胞周期和细胞的增殖状况进行分析。

有多种荧光染料可以对细胞中的DNA或RNA染色,常用的DNA染料包括碘化丙啶(PI)、DAPI、Hoechst 33342等,RNA染料有噻唑橙、吖啶橙等。

百度百科-荧光染料

电泳后,核酸需经染色才能显色出带型,常用以下核酸染色剂:

1、溴化乙锭(ethidium bromide, EB)

最常用的核酸荧光染料,可嵌入核酸双链的配对碱基之间,在紫外线激发下,发出桔红色荧光。 EB-DNA复合物中的EB发出的荧光,比游离的凝胶中的EB发出的荧光强度大10倍,因此无需洗净背景即可清楚观察核酸带型。若EB背景太深,可将凝胶 浸泡于1mmol/LMgSO4中1h或10mmol/L MgCl2中5min,使非结合的EB褪色,这 样可检查到10ng的DNA样品,EB也可用于检测单链DNA或RNA,但其对单链核酸的亲和力相对较小,荧光产率也相对较低。

在凝胶或电泳缓冲液中加入终浓度为0.5μg/ml的EB,染色可在电泳过程中进行,能随时观察核酸的迁移情况。但EB带正电荷,嵌入碱基后增加了 核酸分子的刚性,使迁移率减慢,故不宜用于测定核酸分子量的大小,这时应在电泳后将凝胶浸入0.5μg/ml的EB水溶液中10min进行染色。EB见光 易分解,应于4℃避光保存,

2、吖啶橙(acridine orange, AO):

吖啶橙可嵌入双链核酸碱基对之间,在254nm紫外线激发下发出530nm的绿色荧光;还通过静电与单链核酸的磷酸基结合,在254nm紫外线激发 下产生640nm的红色荧光。因此可区分单链和双链核酸,灵敏度分别为0.1μg和0.05μg。但吖啶橙的染色操作要求严格,应在 22℃,0.01mol/L磷酸钠缓冲液(pH7.0)中避光浸泡30min,然后在搪瓷盘中用该缓冲剂4℃脱色过夜或22℃脱色1~2小时。

3、银(Ag+)试剂:

Ag+与核酸形成稳定复合物,然后用甲醛使Ag+还原成银颗粒。AgNO3等试剂可使聚丙烯酰胺凝胶上的单链,双链DNA及 RNA都染成黑褐色。银染法的灵敏度比EB染色高200倍左右,比亚甲蓝染色高100~1000倍,在小于0.5mm厚的凝胶中,能检测出0.5ng的 RNA,其缺点是专一性不强,能与蛋白质,去污剂反应也产生褐色,而且对DNA的染色定量不准确。银与DNA稳定结合,对DNA有破坏作用,不适于DNA 片段回收的制备。

4、亚甲蓝(methylene blue)

可将RNA染成蓝色,但灵敏度不高,而且操作时间长。染色过程:胶浸泡于0.02%的亚甲蓝,10mmol/L Tris-Ac(pH8.3),4℃放置1~2h,用净水洗5~8h(反复换水),带型肉眼可见,最低检测量为 250ng。