吖啶酯衍生物-吖啶衍生物为何会造成移码突变的原因

从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。下面我整理了一些相关信息,供大家参考!

基因突变的类型有哪些

1、碱基置换突变

指DNA分子中一个碱基对被另一个不同的碱基对取代所引起的突变,也称为点突变(point mutation)。点突变分转换和颠换两种形式。如果一种嘌呤被另一种嘌呤取代或一种嘧啶被另一种嘧啶取代则称为转换(transition)。嘌呤取代嘧啶或嘧啶取代嘌呤的突变则称为颠换(transversion)。由于DNA分子中有四种碱基,故可能出现4种转换和8种颠换。在自然发生的突变中,转换多于颠换。

2、移码突变

指DNA片段中某一位点插入或丢失一个或几个(非3或3的倍数)碱基对时,造成插入或丢失位点以后的一系列编码顺序发生错位的一种突变。它可引起该位点以后的遗传信息都出现异常。发生了移码突变的基因在表达时可使组成多肽链的氨基酸序列发生改变,从而严重影响蛋白质或酶的结构与功能。吖啶类诱变剂如原黄素、吖黄素、吖啶橙等由于分子比较扁平,能插入到DNA分子的相邻碱基对之间。

3、缺失突变

基因也可以因为较长片段的DNA的缺失而发生突变。缺失的范围如果包括两个基因,那么就好象两个基因同时发生突变,因此又称为多位点突变。由缺失造成的突变不会发生回复突变。所以严格地讲,缺失应属于染色体畸变。

4、插入突变

一个基因的DNA中如果插入一段外来的DNA,那么它的结构便被破坏而导致突变。大肠杆菌的噬菌体Mu-1和一些插入顺序(IS)以及转座子(见转座因子)都是能够转移位置的遗传因子,当它们转移到某一基因中时,便使这一基因发生突变。

基因突变的特点是什么

1.普遍性:生物界中普遍存在

2.随机性:生物个体发育的任何时期和任何部位都有可能发生

3.低频性:突变频率很低

4.不定向性:可以产生一个以上的等位基因

5.多害少利性:一般是有害的少数是有利的

基因突变会引起什么后果

生物学告诉我们,DNA通过复制,将基因信息代代相传。而DNA复制的保真性是维持物种相对稳定的主要因素。不过,这种保真性是相对的,在一定的条件下,DNA分子会发生损伤,或者说突变,这样的结果有两种,一种是导致复制或转录障碍,一种就是导致复制后基因突变,使DNA序列发生永久性的改变。

通常,我们容易把突变误解为都是危害生命的。诚然,某些基因突变会导致遗传疾病和肿瘤疾病的发生。但是,DNA突变有消极的一面,也有积极的一面。从长远的生物进化史看,物种进化的根本原因就是基因突变的不断发生所造成的,没有突变就不可能有现在的生物世界。

而通常人们认为突变是有害的,主要是指某些突变会产生一些疾病,包括遗传病、肿瘤及有遗传倾向的病。少数已经知道其遗传缺陷在哪里,比如血友病是凝血因子基因的突变,地中海贫血时血红蛋白基因突变等。有遗传倾向的疾病,如高血压、糖尿病、肿瘤等,可以肯定和生活环境有关,但也有证据表明某些基因发生了变异。不过,涉及的基因不是少数几个,而是众多基因与生活环境因素共同作用的结果。

遗传学家认为:没有突变就不会有遗传学。突变也被视为物种进化的“推动力”,不理想的突变会经自然选择过程被淘汰,而对物种有利的突变则会被累积下去。

基因突变的三种类型是什么?

基因突变的一些表达方式是什么意思

基因突变是基因组DNA分子发生的突然的、可遗传的变异现象(gene mutation)。从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。基因虽然十分稳定,能在细胞分裂时精确地复制自己,但这种稳定性是相对的。在一定的条件下基因也可以从原来的存在形式突然改变成另一种新的存在形式,就是在一个位点上,突然出现了一个新基因,代替了原有基因,这个基因叫做突变基因。于是后代的表现中也就突然地出现祖先从未有的新性状。

1个基因内部可以遗传的结构的改变。又称为点突变,通常可引起一定的表型变化。广义的突变包括染色体畸变。狭义的突变专指点突变。实际上畸变和点突变的界限并不明确,特别是微细的畸变更是如此。野生型基因通过突变成为突变型基因。突变型一词既指突变基因,也指具有这一突变基因的个体。

基因突变可以发生在发育的任何时期,通常发生在DNA复制时期,即细胞分裂间期,包括有丝分裂间期和减数分裂间期;同时基因突变和脱氧核糖核酸的复制、DNA损伤修复、癌变和衰老都有关系,基因突变也是生物进化的重要因素之一,所以研究基因突变除了本身的理论意义以外还有广泛的生物学意义。基因突变为遗传学研究提供突变型,为育种工作提供素材,所以它还有科学研究和生产上的实际意义。

种类

基因突变可以是自发的也可以是诱发的。自发产生的基因突变型和诱发产生的基因突变型之间没有本质上的不同,基因突变诱变剂的作用也只是提高了基因的突变率。

按照表型效应,突变型可以区分为形态突变型、生化突变型以及致突变型等。这样的区分并不涉及突变的本质,而且也不严格。因为形态的突变和致的突变必然有它们的生物化学基础,所以严格地讲一切突变型都是生物化学突变型。根据碱基变化的情况,基因突变一般可分为碱基置换突变(base substitution和移码突变(frameshift mutation)两大类。

碱基置换突变(subsititution)

指DNA分子中一个碱基对被另一个不同的碱基对取代所引起的突变,也称为点突变(point mutation)。点突变分转换和颠换两种形式。如果一种嘌呤被另一种嘌呤取代或一种嘧啶被另一种嘧啶取代则称为转换(transitioBU诱发的突变n)。嘌呤取代嘧啶或嘧啶取代嘌呤的突变则称为颠换(transversion)。由于DNA分子中有四种碱基,故可能出现4种转换和8种颠换。在自然发生的突变中,转换多于颠换。

碱基对的转换可由碱基类似物的掺入造成。例如,5-溴尿嘧啶(5-bromouracil,BU)是一种与胸腺嘧啶类似的化合物,具有酮式和烯醇式

两种结构,且两者可以互变,一般酮式较易变为烯醇式。当DNA复制时,酮式BU代替了T,使A-T碱基对变为A-BU;第二次复制时,烯醇式BU能和G配对,故出现G-BU碱基对;第三次复制时,G和C配对,从而出现

G-C碱基对,这样,原来的A-T碱基对就变成G-C碱基对。

碱基对的转换也可由一些化学诱变剂诱变所致。例如,亚硝酸类能使胞嘧啶(C)氧化脱氨变成尿嘧啶(U),在下一 次复制中,U不与G配对,而与A配对;复制结果C-G变为T-A(见右图)。又如,烷化剂中的芥子气和硫酸二乙酯可使G发生乙基化,成为烷基化鸟嘌呤(mG),结果,mG不与C配对,而与T配对,经过复制,G-C变为A-T。

移码突变(translocation)

指DNA片段中某一位点插入或丢失一个或几个(非3或3的倍数)碱基对时,造成插入或丢失位点以后的一系列编码顺序发生错位的一种突变。它可引起该位点以后的遗传信息都出现异常。发生了移码突变的基因在表达时可使组成多肽链的氨基酸序列发生改变,从而严重影响蛋白质或酶的结构与功能。吖啶类诱变剂如原黄素、吖黄素、吖啶橙等由于分子比较扁平,能插入到DNA分子的相邻碱基对之间。如在DNA复制前插入,会造成1个碱基对的插入;若在复制过程中插入,则会造成1个碱基对的缺失,两者的结果都引起移码突变。

缺失突变(deletion)

基因也可以因为较长片段的DNA的缺失而发生突变。缺失的范围如果包括两个基因,那么就好象两个基因同时发生突变,因此又称为多位点突变。由缺失造成的突变不会发生回复突变。所以严格地讲,缺失应属于染色体畸变。

插入突变(insertion)

一个基因的DNA中如果插入一段外来的DNA,那么它的结构便被破坏而导致突变。大肠杆菌的噬菌体Mu-1和一些插入顺序(IS)以及转座子(见转座因子)都是能够转移位置的遗传因子,当它们转移到某一基因中时,便使这一基因发生突变。许多转座子上带有抗药性基因,当它们转移到某一基因中时,一方面引起突变,另一方面使这一位置上出现一个抗药性基因。插入的DNA分子可以通过切离而失去,准确的切离可以使突变基因回复成为野生型基因。这一事件的出现频率并不由于诱变剂的处理而提高。

什么是基因突变?突变的分子基础是什么?

基因突变的三种类型是:

1、碱基置换突然变化

指DNA分子中一个碱基对被另一个不一样的碱基对替代所造成的突然变化,也称之为点突变。点突变分变换和颠换二种方式。假如一种漂呤被另一种漂呤替代或一种嘧啶被另一种嘧啶替代则称之为变换。漂呤替代嘧啶或嘧啶替代漂呤的突然变化则称之为颠换。因为DNA分子中有四种碱基,故可能出现4种变换和8种颠换。在当然产生的突然变化中,变换超过颠换。

2、移码突变

指DNA片段中某一位点插进或遗失一个或好多个(非3或3的倍率)碱基对时,导致插进或遗失结构域之后的一系列编号次序产生移位的一种突然变化。

它可造成该结构域之后的遗传物质都发现异常。发生了移码突变的遗传基因在表述时可使构成多肽链的氨基酸序列产生改变,进而比较严重影响蛋白或酶的构造与作用。吖啶类诱变剂如原鞘磷脂、吖鞘磷脂、吖啶橙等因为分子结构较为平扁,能插进到DNA分子的邻近碱基对中间。如在DNA复制前插进,会导致1个碱基对的插进;若在拷贝全过程中插进,则会导致1个碱基对的缺少,二者的结果都造成移码突变。

3、缺少突然变化

遗传基因还可以由于较长精彩片段的DNA的缺少而产生突然变化。缺少的范畴假如包含2个遗传基因,那麼就好像2个遗传基因另外产生突然变化,因而又称之为多名点突变。由缺少导致的突然变化不容易产生回复突变。因此严苛地讲,缺少应归属于染色体畸变。

基因突变的特点:

1、少利多害性

一般基因突变会产生不利的影响,被淘汰或是亡,但有极少数会使物种增强适应性。

2、不定向性

例如控制黑毛A基因可能突变为控制白毛的a+或控制绿毛的a-基因。

3、有益性

一般基因突变是有害的,但是有极为少数的是有益突变。例如一只鸟的嘴巴很短,突然突变变种后,嘴巴会变长,这样会容易捕捉食物或水。

4、独立性

某一基因位点的一个等位基因发生突变,不影响另一个等位基因,即等位基因中的两个基因不会同时发生突变。

5、重演性

同一生物不同个体之间可以多次发生同样的突变。

6、稀有性

在第一个突变基因发现时,不是发现若干白色复眼果绳而是只发现一只,说明突变是极为稀有的,也就是说野生型基因以极低的突变率发生突变(一些有代表性的基因突变率见表)。

如果人体内有一个细胞控制头发的基因发生了突变。那么头发就会表现出变化吗?

基因突变是指基因组DNA分子发生的突然的可遗传的变异。从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。

分子基础:

一、自发突变(spontaneous mutation)

自发突变可能由复制错误、DNA损伤和转座作用等引起。

1.DNA复制错误(errors of DNA replication)

DNA碱基有互变异构体,造成DNA复制过程中的DNA错配。

(1)转换:Purine→ Pu;或者 Pyrimidine→ Py

(2)颠换:Pu →Py; 或者Py→Pu

(3)移码突变:增加或减少几个碱基,导致蛋白质翻译错位。

(4)缺失和重复:大片段碱基的缺失或重复,如E.coli乳糖发酵调节基因lacⅠ中四碱基重复序列。

野生型: 5‘-GTCTGGCTGGCTGGC-3’

突变型FS5: 5‘-GTCTGGCTGGCTGGCTGGC-3’

突变型FS2: 5‘-GTCTGGCTGGC-3’

2、DNA损伤(lesions)

(1)脱嘌呤 由于碱基和脱氧核糖间的糖苷键受到破坏,从而引起一个鸟嘌呤或腺嘌呤从DNA分子上脱落下来.

(2)脱氨基 C脱氨基变成U;A脱氨基变成H,:

A A?T →→ → H-T→→→ H-C→→→ H-C

↘→A-T ↘→G-C

B G?C →→ → G-U→→→ A-U→→→A-U

↘→G-C ↘→A-T

造成转换

(3)氧化损伤(oxidative lesions): O2- OH- H2O2

可对DNA造成损伤

二、诱发突变(induced mutaion)

多种理化因素都可以诱导DNA的突变:

1、诱变机制

(1)碱基类似物 例:5-BU 和5-BrdU是胸腺嘧啶(T)的结构类似物,酮式结构易与A配对;烯醇式结构易与G配对。另有2-氨基嘌呤(2-AP, A类似物)、5- 氟尿嘧啶、5-氯尿嘧啶等。

(2) 特异性错配 例烷化剂: 甲磺酸乙酯(EMS)、亚硝基胍( NG)、芥子气等。通过改变碱基结构使碱基错配。

如:G-C; 当G烷基化后可与T配对,导致碱基转换。

或者烷化剂使嘌呤脱落,造成转换、颠换、断裂或其他突变

子 (3) 嵌合剂的致突作用

例 .吖啶类染料: 吖啶橙、吖啶黄素、原黄素等碱基对的类似物,易造成移码突变。

(4) 辐射诱导效应

①紫外线UV:形成嘧啶二聚体,如T二聚体,①同一条单链内,影响复制时与A的配对,使复制中止;②双链之间,影响双链变性,并影响复制。

重复、缺失、移码突变

②电离辐射:如X-ray、可引起碱基的降解或脱落,A变成H;C变成T,出现转换。

物理——物理化学——生物化学——大分子损伤

ⅴ黄曲霉的作用

使鸟嘌呤G脱落,SOS修复引入A, 造成突变。

2、碱基替换的遗传效应

(ⅰ) 同义突变(samesense mutation)不改变氨基酸的密码子变化,与密码子的兼并性有关. 如GAU/GAC—Asp.

(ⅱ) 错义突变(missense mutation) 碱基替换的结果引起氨基酸序列的改变.

(ⅲ) 无义突变(nonsense mutation)编码区的单碱基突变导致终止密码子(UAG/UGA/UAA)的形成, 使 mRNA的翻译提前终止, 形成不完全的肽链.

如镰刀型贫血症:血红蛋白B链(146Aa),6号氨基酸的替换, 导致明显的表型症状。Glu→Val, 若Glu →Asp则影响较小。

3、码突变及其产生

在基因的外显子中插入或缺失1, 2或4个核苷酸,使阅读信息发生错位,从而使翻译的蛋白质序列与原来完全不同. eg. E.coli中乳糖发酵的调节基因(lacⅠ):

野生型: 5‘-GTCTGGCTGGCTGGC-3’

移码突变Ⅰ: 5‘-GTCTGGCTGGCTGGCTGGC-3’

移码突变 Ⅱ: 5‘-GTCTGGCTGGC-3’

4、突变热点和增变基因

基因中某些位点比其它位点突变率高,称突变热点。

例 分析T4-Phage r Ⅱ基因1500个突变体: r ⅡA (1800bp)有200个位点; r ⅡB (850bp)有108个位点 。

形成原因:

(1)、 5-MeC的存在,5-甲基胞嘧啶(MeC)脱氨基后变成T, 使G-C部位转变成A-T部位;

(2)短的重复序列的存在,容易配对错位,造成重复或缺失

(3)与诱变剂类型有关,不同诱变剂出现不同的热点。

( 4)增变基因(mutator gene):该基因的突变会使整个基因组的突变频率增高,例 A. DNA多聚酶基因,突变后使多聚酶的3’ → 5’校正功能降低或丧失,使基因组突变频率增高;

B. dam基因,突变后使碱基的错配修复功能降低或丧失,使基因组突变频率增高。

三、诱变与肿瘤

肿瘤的形成与否取决于机体中癌基因和抑癌基因的平衡,抑癌基因突变会致癌。一些诱变剂可以特异性的诱导抑癌基因突变,导致肿瘤发生。eg. 黄曲霉素、UV(ultraviolet)等。

黄曲霉素可诱导P53基因G → T颠换,导致肝癌的发生;

UV可诱导P53基因5’ -TC-3’发生C → T颠换,形成“T二聚体”,导致人类鳞状细胞皮肤癌的发生。

四、定点诱变

定义:利用人工合成的寡核苷酸,在离体的条件下,制造基因中任何部位的位点特异性突变的技术。

反义遗传学(reverse genetics):合成—连接(单链M13)—复制—转化—检测

自然情况下 细胞质基因会发生突变吗

不一定,如果是突变成了显性基因的话,就会显现

基因组DNA分子发生的突然的、可遗传的变异现象(gene mutation)。从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。基因虽然十分稳定,能在细胞分裂时精确地复制自己,但这种稳定性是相对的。在一定的条件下基因也可以从原来的存在形式突然改变成另一种新的存在形式,就是在一个位点上,突然出现了一个新基因,代替了原有基因,这个基因叫做突变基因。于是后代的表现中也就突然地出现祖先从未有的新性状。

1个基因内部可以遗传的结构的改变。又称为点突变,通常可引起一定的表型变化。广义的突变包括染色体畸变。狭义的突变专指点突变。实际上畸变和点突变的界限并不明确,特别是微细的畸变更是如此。野生型基因通过突变成为突变型基因。突变型一词既指突变基因,也指具有这一突变基因的个体。

基因突变可以发生在发育的任何时期,通常发生在DNA复制时期,即细胞分裂间期,包括有丝分裂间期和减数分裂间期;同时基因突变和脱氧核糖核酸的复制、DNA损伤修复、癌变和衰老都有关系,基因突变也是生物进化的重要因素之一,所以研究基因突变除了本身的理论意义以外还有广泛的生物学意义。基因突变为遗传学研究提供突变型,为育种工作提供素材,所以它还有科学研究和生产上的实际意义。

基因突变可以是自发的也可以是诱发的。自发产生的基因突变型和诱发产生的基因突变型之间没有本质上的不同,基因突变诱变剂的作用也只是提高了基因的突变率。

碱基置换示意图

按照表型效应,突变型可以区分为形态突变型、生化突变型以及致突变型等。这样的区分并不涉及突变的本质,而且也不严格。因为形态的突变和致的突变必然有它们的生物化学基础,所以严格地讲一切突变型都是生物化学突变型。根据碱基变化的情况,基因突变一般可分为碱基置换突变(base substitution和移码突变(frameshift mutation)两大类。

碱基置换突变(subsititution)

指DNA分子中一个碱基对被另一个不同的碱基对取代所引起的突变,也称为点突变(point mutation)。点突变分转换和颠换两种形式。如果一种嘌呤被另一种嘌呤取代或一种嘧啶被另一种嘧啶取代则称为转换(transitio

BU诱发的突变

n)。嘌呤取代嘧啶或嘧啶取代嘌呤的突变则称为颠换(transversion)。由于DNA分子中有四种碱基,故可能出现4种转换和8种颠换(见上图)。在自然发生的突变中,转换多于颠换。

碱基对的转换可由碱基类似物的掺入造成。例如,5-溴尿嘧啶(5-bromouracil,BU)是一种与胸腺嘧啶类似的化合物,具有酮式和烯醇式两种结构,且两者可以互变,一般酮式较易变为烯醇式。当DNA复制 时,酮式BU代替了T,使A-T碱基对变为A-BU;第二次复制时,烯醇式BU能和G配对,故出现G-BU碱基对;第三次复制时,G和C配对,从而出现G-C碱基对,这样,原来的A-T碱基对就变成G-C碱基对(见左图)。

亚硝胺诱发的突变

碱基对的转换也可由一些化学诱变剂诱变所致。例如,亚硝酸类能使胞嘧啶(C)氧化脱氨变成尿嘧啶(U),在下一 次复制中,U不与G配对,而与A配对;复制结果C-G变为T-A(见右图)。又如,烷化剂中的芥子气和硫酸二乙酯可使G发生乙基化,成为烷基化鸟嘌呤(mG),结果,mG不与C配对,而与T配对,经过复制,G-C变为A-T。

移码突变(translocation)

指DNA片段中某一位点插入或丢失一个或几个(非3或3的倍数)碱基对时,造成插入或丢失位点以后的一系列编码顺序发生错位的一种突变。它可引起该位点以后的遗传信息都出现异常。发生了移码突变的基因在表达时可使组成多肽链的氨基酸序列发生改变,从而严重影响蛋白质或酶的结构与功能。吖啶类诱变剂如原黄素、吖黄素、吖啶橙等由于分子比较扁平,能插入到DNA分子的相邻碱基对之间。如在DNA复制前插入,会造成1个碱基对的插入;若在复制过程中插入,则会造成1个碱基对的缺失,两者的结果都引起移码突变。

缺失突变(deletion)

基因也可以因为较长片段的DNA的缺失而发生突变。缺失的范围如果包括两个基因,那么就好象两个基因同时发生突变,因此又称为多位点突变。由缺失造成的突变不会发生回复突变。所以严格地讲,缺失应属于染色体畸变。

插入突变(insertion)

一个基因的DNA中如果插入一段外来的DNA,那么它的结构便被破坏而导致突变。大肠杆菌的噬菌体Mu-1和一些插入顺序(IS)以及转座子(见转座因子)都是能够转移位置的遗传因子,当它们转移到某一基因中时,便使这一基因发生突变。许多转座子上带有抗药性基因,当它们转移到某一基因中时,一方面引起突变,另一方面使这一位置上出现一个抗药性基因。插入的DNA分子可以通过切离而失去,准确的切离可以使突变基因回复成为野生型基因。这一事件的出现频率并不由于诱变剂的处理而提高。

特性编辑

不论是真核生物还是原核生物的突变,也不论是什么类型的突变,都具有随机性、低频性和可逆性等共同的特性。

普遍性

基因突变在自然界各物种中普遍存在。

随机性

T.H.摩尔根在饲养的许多红色复眼的果蝇中偶然发现了一只白色复眼的果蝇。这一事实说明基因突变的发生在时间上、在发生这一突变的个体上、在发生突变的基因上,都是随机的。以后在高等植物中所发现的无数突变都说明基因突变的随机性。在细菌中则情况远为复杂。在含有某一种药物的培养基中培养细菌时往往可以得到对于这一药物具有抗性的细菌,因此曾经认为细菌的抗药性的产生是药物引起的,是定向的适应而不是随机的突变。S.卢里亚和M.德尔布吕克在1943年首先用波动测验方法证明在大肠杆菌中的抗噬菌体细菌的出现和噬菌体的存在无关。J.莱德伯格等在1952年又用印影接种方法证实了这一论点。方法是把大量对于药物敏感的细菌涂在不含药物的培养基表面,把这上面生长起来的菌落用一块灭菌的丝绒作为接种工具印影接种到含有某种药物的培养基表面,使得两个培养皿上的菌落的位置都一一对应。根据后一培养基表面生长的个别菌落的位置,可以在前一培养皿上找到相对应的菌落。在许多情况下可以看到这些菌落具有抗药性。由于前一培养基是不含药的,因此这一实验结果非常直观地说明抗药性的出现不依赖于药物的存在,而是随机突变的结果,只不过是通过药物将它们检出而已。

稀有性

在第一个突变基因发现时,不是发现若干白色复眼果绳而是只发现一只,说明突变是极为稀有的,也就是说野生型基因以极低的突变率发生突变(一些有代表性的基因突变率见表)。在有性生殖的生物中,突变率用每一配子发生突变的概率,也就是用一定数目配子中的突变型配子数表示。在无性生殖的细菌中,突变率用每一细胞世代中每一细菌发生突变的概率,也就是用一定数目的细菌在分裂一次过程中发生突变的次数表示。据估计,在高等生物中,大约10^5~10^8个生殖细胞中,才会有1个生殖细胞发生基因突变。虽然基因突变的频率很低,但是当一个种群内有许多个体时,就有可能产生各种各样的随机突变,足以提供丰富的可遗传的变异。

可逆性

野生型基因经过突变成为突变型基因的过程称为正向突变。正向突变的稀有性说明野生型基因是一个比较稳定的结构。突变基因又可以通过突变而成为野生型基因,这一过程称为回复突变。从表中同样可以看到回复突变是难得发生的,说明突变基因也是一个比较稳定的结构。不过,正向突变率总是高于回复突变率,这是因为一个野生型基因内部的许多位置上的结构改变都可以导致基因突变,但是一个突变基因内部只有一个位置上的结构改变才能使它恢复原状。

少利多害性

一般基因突变会产生不利的影响,被淘汰或是亡,但有极少数会使物种增强适应性。

不定向性

例如控制黑毛A基因可能突变为控制白毛的a+或控制绿毛的a-基因。

有益性

一般基因突变是有害的,但是有极为少数的是有益突变。例如一只鸟的嘴巴很短,突然突变变种后,嘴巴会变长,这样会容易捕捉食物或水。

解释了一个鸟的基因突变或进化后的明显区别

一般,基因突变后身体会发出抗体或其他修复体进行自行修复。可是有一些突变是不可回转性的。突变可能导致立即亡,也可以导致惨重后果,如器官无法正常运作,DNA严重受损,身体免疫力低下等。如果是有益突变,可能会发生奇迹,如身体分泌中特殊变种细胞来保护器官,身体,或在一些没有受骨骼保护的部位长出骨骼。基因与DNA就像是每个人的身份证,可他又是一个人的先知,因为它决定着身体的衰老、病变、亡的时间。

独立性

某一基因位点的一个等位基因发生突变,不影响另一个等位基因,即等位基因中的两个基因不会同时发生突变。

①隐性突变:当代不表现,F2代表现。

②显性突变:当代表现,与原性状并存,形成镶嵌现象或嵌合体。

重演性

同一生物不同个体之间可以多次发生同样的突变。

亚硝酸,碱基类似物为什么可以改变核酸的碱基?

自然情况下 细胞质基因可能发生基因重组

自然情况下 细胞质内不能发生染色体变异

从广义上讲,任何造成基因型变化的基因交流过程,都叫做基因重组,而狭义的基因重组仅指涉及DNA分子内断裂—复合的基因交流。真核生物在减数分裂时,通过非同源染色体的自由组合形成各种不同的配子,雌雄配子结合产生基因型各不相同的后代,这种重组过程虽然也导致基因型的变化,但是由于它不涉及DNA分子内的断裂c复合,因此,不包括在狭义的基因重组的范围之内。

真核细胞的细胞质基因的载体是叶绿体、线粒体,无染色体,当然不可能发生染色体变异了,而细胞核基因的载体是染色体,才可能发生染色体变异来。

基因突变包括基因对的增添与缺失为什么书上说基因突

亚硝酸能使嘌呤或嘧啶脱氨,改变核酸结构和性质,造成DNA复制紊乱。

在dna复制时碱基类似物能代替碱基进入dna链,而碱基类似物没有像AT,CG那样的专一配对性,如5-溴尿嘧啶,既可以与A配对也可以与G配对,那么在复制的过程中原来的A可能被替换成G.

基因突变包括哪些类型

在高中教材中,基因突变主要包括碱基对的增添、缺失和替换。

而大学教材中,基因突变的种类主要包括碱基置换突变(base substitution和移码突变(frameshift mutation)两大类,实质是一样的。

1、碱基置换突变(subsititution)指DNA分子中一个碱基对被另一个不同的碱基对取代所引起的突变,也称为点突变(point mutation)。点突变分转换和颠换两种形式。如果一种嘌呤被另一种嘌呤取代或一种嘧啶被另一种嘧啶取代则称为转换(transition)。嘌呤取代嘧啶或嘧啶取代嘌呤的突变则称为颠换(transversion)。由于DNA分子中有四种碱基,故可能出现4种转换和8种颠换(见上图)。在自然发生的突变中,转换多于颠换。

2、移码突变(translocation)指DNA片段中某一位点插入或丢失一个或几个(非3或3的倍数)碱基对时,造成插入或丢失位点以后的一系列编码顺序发生错位的一种突变。它可引起该位点以后的遗传信息都出现异常。发生了移码突变的基因在表达时可使组成多肽链的氨基酸序列发生改变,从而严重影响蛋白质或酶的结构与功能。吖啶类诱变剂如原黄素、吖黄素、吖啶橙等由于分子比较扁平,能插入到DNA分子的相邻碱基对之间。如在DNA复制前插入,会造成1个碱基对的插入;若在复制过程中插入,则会造成1个碱基对的缺失,两者的结果都引起移码突变。

基因突变的类型按照表型效应,突变型可以区分为形态突变型、生化突变型以及致突变型等。表型突变效应不是突变的本质,基因突变是以生物化学为基础的,严格地讲一切突变型都是生物化学突变型。根据碱基变化的情况,基因突变一般可分为碱基置换突变和移码突变两大类。

一、碱基置换突变:指DNA分子中一个碱基对被另一个不同的碱基对取代所引起的突变,也称为点突变。点突变分转换和颠换两种形式。如果一种嘌呤被另一种嘌呤取代或一种嘧啶被另一种嘧啶取代则称为转换。嘌呤取代嘧啶或嘧啶取代嘌呤的突变则称为颠换。由于DNA分子中有四种碱基,故可能出现4种转换和8种颠换。在自然发生的突变中,转换多于颠换。

碱基对的转换可由碱基类似物的掺入造成。例如,5-溴尿嘧啶是一种与胸腺嘧啶类似的化合物,具有酮式和烯醇式两种结构,且两者可以互变,一般酮式较易变为烯醇式。当DNA复制 时,酮式BU代替了T,使A-T碱基对变为A-BU;第二次复制时,烯醇式BU能和G配对,故出现G-BU碱基对;第三次复制时,G和C配对,从而出现G-C碱基对,这样,原来的A-T碱基对就变成G-C碱基对。

碱基对的转换也可由一些化学诱变剂诱变所致。例如,亚硝酸类能使胞嘧啶(C)氧化脱氨变成尿嘧啶(U),在下一 次复制中,U不与G配对,而与A配对;复制结果C-G变为T-A。又如,烷化剂中的芥子气和硫酸二乙酯可使G发生乙基化,成为烷基化鸟嘌呤(mG),结果,mG不与C配对,而与T配对,经过复制,G-C变为A-T。

二、移码突变:指DNA片段中某一位点插入或丢失一个或几个(非3或3的倍数)碱基对时,造成插入或丢失位点以后的一系列编码顺序发生错位的一种突变。它可引起该位点以后的遗传信息都出现异常。发生了移码突变的基因在表达时可使组成多肽链的氨基酸序列发生改变,从而严重影响蛋白质或酶的结构与功能。吖啶类诱变剂如原黄素、吖黄素、吖啶橙等由于分子比较扁平,能插入到DNA分子的相邻碱基对之间。如在DNA复制前插入,会造成1个碱基对的插入;若在复制过程中插入,则会造成1个碱基对的缺失,两者的结果都引起移码突变。

1、缺失突变。基因也可以因为较长片段的DNA的缺失而发生突变。缺失的范围如果包括两个基因,那么就好象两个基因同时发生突变,因此又称为多位点突变。由缺失造成的突变不会发生回复突变。所以严格地讲,缺失应属于染色体畸变。

2、插入突变。一个基因的DNA中如果插入一段外来的DNA,那么它的结构便被破坏而导致突变。大肠杆菌的噬菌体Mu-1和一些插入顺序(IS)以及转座子(见转座因子)都是能够转移位置的遗传因子,当它们转移到某一基因中时,便使这一基因发生突变。许多转座子上带有抗药性基因,当它们转移到某一基因中时,一方面引起突变,另一方面使这一位置上出现一个抗药性基因。插入的DNA分子可以通过切离而失去,准确的切离可以使突变基因回复成为野生型基因。这一事件的出现频率并不由于诱变剂的处理而提高。