3氟苯甲酰乙酸乙酯用途是什么-甲苯和三氟乙酸

 强力去污乳化剂

 强力去污乳化剂是一种由高浓缩表面活性剂合成的低泡沫油污乳化剂,与主洗粉配合使用可有效去除工装、台布、餐巾上的重油污垢,可防止毛巾、床单等织物的污垢再沉淀,提高所洗织物的洗涤质量。

 乳化剂一般是表面活性剂与矿物油和油脂的混合物,但也可以溶于水。它可以通过把油和油脂分解成非常细小的颗粒而将其形成的污垢从面料驱逐下来。一旦乳化在水中,油和油脂即可通过稀释作用被移除。

 乳化剂有助于在洗涤过程中去除衣物上粘着的矿物质油或油脂。如果和适量的碱和洗涤剂混合则可以用来去除汽油。碱和喜油的表面活性剂相结合可以将油和油脂形成的小珠分解成非常细小的颗粒。之后,乳化剂就会将其包围并在其表面形成?层奶状物质。这样在乳化和溶入水之后,油和油脂就会通过稀释作用而被去除了。

 蛋白质四级结构

 具有二条或二条以上独立三级结构的多肽链组成的蛋白质,其多肽链间通过次级键相互组合而形成的空间结构称为蛋白质的四级结构。其中,每个具有独立三级结构的多肽链单位称为亚基。四级结构实际上是指亚基的立体排布、相互作用及接触部位的布局。亚基之间不含共价键,亚基间次级键的结合比二、三级结构疏松,因此在一定的条件下,四级结构的蛋白质可分离为其组成的亚基,而亚基本身构象仍可不变。

 一种蛋白质中,亚基结构可以相同,也可不同。如烟草斑纹病毒的外壳蛋白是由2200个相同的亚基形成的多聚体;正常人血红蛋白A是两个?亚基与两个?亚基形成的四聚体;天冬氨酸氨甲酰基转移酶由六个调节亚基与六个催化亚基组成。有人将具有全套不同亚基的最小单位称为原聚体,如一个催化亚基与一个调节亚基结合成天冬氨酸氨甲酰基转移酶的原聚体。

 某些蛋白质分子可进一步聚合成聚合体(polymer)。聚合体中的重复单位称为单体,聚合体可按其中所含单体的数量不同而分为二聚体、三聚体寡聚体和多聚体而存在,如胰岛素在体内可形成二聚体及六聚体。

 兴奋性突触后电位

 兴奋性突触后电位略称EPSP,是指由兴奋性突触的活动,在突触后神经元中所产生的去极化性质的膜电位变化。这种去极化超过阈值时,就产生突触后神经元的兴奋,亦即产生动作电位。

 兴奋性突触后电位:

 在猫脊髓运动神经元中,刺激对应Ia群的向中纤维时所产生的EPSP在11.5毫秒内达顶点,以后则大致按指数函数下降,10-20毫秒内回到静息电位水平。这时,突触下膜在化学递质作用下,引起细胞膜对Na+、K+等离子的通透性增加(主要是Na+ ),导致Na+内流,出现局部去极化电位。

 称此电流为突触后电流,结果发生膜电位变化,亦即产生EPSP.递质的作用即离子透性的增大约在1毫秒内结束,以后EPSP将按膜的电时间常数消失。与这种化学传递的EPSP相对应,电传递的EPSP是因突触前纤维的动作电流,通过电紧张的结合,流到突触后神经元而发生的,其时间过程也与动作电位的时间过程大致对应。

 特点:

 (1)突触前膜释放递质是Ca2+内流引发的;

 (2)递质是以囊泡的形式以出胞作用的方式释放出来的;

 (3)EPSP是局部电位,而不是动作电位;

 (4)EPSP是突触后膜离子通透性变化所致,与突触前膜无关。

 氢化可的松

 氢化可的松是人工合成也是天然存在的糖皮质激素,抗炎作用为可的松的1.25倍,也具有免疫抑制作用、抗毒作用、抗休克及一定的盐皮质激素活性等,并有留水、留钠及排钾作用,血浆半衰期为8~12小时。

 本药可以引起变态反应,有2例静脉注射后出现了包括呼吸系统损伤的致性的过敏性休克反应。支气管哮喘的病人经鼻内吸入或静脉注射氢化可的松醋酸酯,也可能引起过敏性休克。

 如果服用本药剂量每日大于50mg,则会引起cushing样反应,如颅内高血压、青光眼、囊下白内障、胰腺炎、骨骼无菌性坏、腹膜炎、肥胖、满月脸、精神综合征、水肿等。

 醋酸可的松鉴别

 ⑴ 取该品约0.1mg,加甲醇1ml 溶解后,加新制的硫酸苯肼试液8ml ,在70℃加热15分钟,即显**。

 ⑵ 取该品约2mg ,加硫酸2ml 使溶解,放置5 分钟,显**或微带橙色;加水10ml稀释后,颜色即消失,溶液应澄清。

 ⑶ 取该品约50mg,加乙醇制氢氧化钾试液2ml ,置水浴上加热5 分钟,放冷,加硫酸溶液(1?2)2ml ,缓缓煮沸1 分钟,即发生醋酸乙酯的香气。

 美替拉酮

 美替拉酮(metyrapone,甲吡酮)能抑制11?-羟化反应,干扰11-去氧皮质酮转化为皮质酮及11-去氧氢化可的松转化为氢化的松,而降低它们的血浆水平,但通过反馈性地促进ACTH分泌导致11-去氧皮质酮和11-去氧氢化可的松代偿性增加,故尿中17-羟类固醇排泄也相应增加。

 临床用于治疗肾上腺皮质肿瘤和产生ACTH的肿瘤所引起的氢化可的松过多症和皮质癌。还可用于垂体释放ACTH功能试验。不良反应较少,可有眩晕、消化道反应等。

 苯佐那酯

 苯佐那酯(benzonatate)又名退嗽露(tessalon)为丁卡因的衍生物。有较强的局部麻醉作用,抑制肺牵张感受器及感觉神经末梢。止咳剂量不抑制呼吸,反能增加肺每分钟通气量。用药后20分钟左右出现作用,维持3~4小时。

 对干咳、阵咳效果良好,也可用于支气管镜等检查前预防咳嗽。有轻度嗜睡、头晕、鼻塞等不良反应,偶见过敏性皮炎。服用时勿将药丸咬碎,以免引起口腔麻木。

 苯丙哌林

 苯丙哌林(benproperine)为非成瘾性镇咳药。能抑制咳嗽中枢,也能抑制肺及胸膜牵张感受器引起的肺-迷走神经反射,且有平滑肌解痉作用。是中枢性和末梢性双重作用的强效镇咳药,其镇咳作用比可待因强。

 口服后1~-20分生效,镇咳作用维持4~7小时,可用于各种原因引起的刺激性干咳。有轻度口干、头晕、胃部烧灼感和皮疹等不良反应。

 喷托维林

 喷托维林(pentoxyverine,咳必清)为人工合成的非成瘾性中枢镇咳药。选择性抑制咳嗽中枢,强度为可待因的1/3.并有阿托品样作用和局部麻醉作用,能松弛支气管平滑肌和抑制呼吸道感受器。

 适用于上呼吸道感染引起的急性咳嗽。偶有轻度头痛、头昏、口干、便秘等。有阿托品样作用,青光眼患者禁用。

  乙酸乙酯

 乙酸乙酯是无色透明液体,低毒性,有甜味,浓度较高时有刺激性气味,易挥发,对空气敏感,能吸水分,使其缓慢水解而呈酸性反应。能与氯仿、乙醇、丙酮和混溶,溶于水(10%ml/ml)。能溶解某些金属盐类(如氯化锂、氯化钴、氯化锌、氯化铁等)。

 相对密度0.902.熔点-83℃。沸点77℃。折光率1.3719.闪点7.2℃(开杯)。易燃。蒸气能与空气形成爆炸性混合物。半数致量(大鼠,经口)11.3ml/kg.

  对氨基苯甲酸

 对氨基苯甲酸是机体细胞生长和分裂所必需的物质叶酸的组成部分之一,在酵母、肝脏、麸皮、麦芽中含量甚高。它是由莽草酸途径经分支酸合成的。该第一步反应是分支酸与氨反应生成4-氨基-4-脱氧分支酸,由氨基脱氧分支酸合成酶催化。

 然后4-氨基-4-脱氧分支酸消除一个丙酮酸,芳构化为对氨基苯甲酸。在细菌中第二步反应是被氨基脱氧分支酸裂解酶催化的,在植物中很可能也存在这一相似的酶,不过至今仍未发现。

  苯二氮卓类药物

 药动学

 口服吸收迅速完全,作用快而短,血浆蛋白结合率高。代谢产物仍具药理活性。

 作用与用途

 1.抗焦虑:

 地西泮在小于镇静的剂量即可产生明显的抗焦虑作用,是治疗焦虑症的首选药。

 2.镇静催眠:

 ①不易产生停药后多、恶梦的反跳现象;

 ②毒性小,安全范围大;

 ③对肝药酶无诱导作用;

 ④依赖性、戒断症状较轻象;

 用于失眠,现已取代巴比妥成为首选的催眠药。

 3.抗惊厥、抗癫痫作用强,用于各种惊厥和癫痫。地西泮静注是治疗癫痫持续状态的首选药。

 4.中枢性肌松:

 用于中枢病变的肌强直,不影响正常活动。

 作用机制

 地西泮与苯二氮卓(BZ)受体结合时,通过促进r-氨基丁酸(GABA)与GABA受体结合,使Cl-通道开放频率增加,加强GABA抑制作用。

 不良反应

 1.常见副作用嗜睡、乏力等。

 2.大剂量偶见共济失调;中毒可见运动失调、肌无力,甚至昏迷和呼吸抑制。

 3.长期服用有耐受性、成瘾性,但成瘾性轻且发生率较低。

 5.孕妇(可能致畸胎)、哺乳妇禁用。饮酒或共用其他中枢抑制药能增强其作用和毒性。

 左旋多巴药理作用

 药动学

 口服吸收后被脱羧,转变成多巴胺。而多巴胺又不易透过血脑屏障,因此进入中枢神经系统的左旋多巴不到用量的1%,在外周组织中形成大量多巴胺是造成不良反应的原因。若同时服用外周脱羧酶抑制剂(卡比多巴)可减少不良反应。

 药理作用

 1.抗帕金森病:

 左旋多巴在脑内转变为多巴胺,补充纹状体中多巴胺的不足,因而具有抗帕金森病的疗效。左旋多巴的作用特点是:

 ①对轻症及较年轻患者疗效较好,而重症及年老衰弱患者疗效差;

 ②对肌肉僵直及运动困难疗效较好,而对肌肉震颤症状疗效差;

 ③作用较慢,常需用药2~3周才出现客观体征的改善,1~6个月以上才获得最大疗效,4作用持久,且随用药时间延长而递增。

 左旋多巴对其他原因引起的帕金森综合征也有效。但对吩噻嗪类等抗精神病药所引起的无效,因这些药有阻断中枢多巴胺受体的作用。

 2.治疗肝昏迷:

 在脑内转变去甲肾上腺素,使患者可由昏迷转为苏醒。因不能改善肝功能,作用只是暂时性的。

 右旋糖酐作用

 1.扩充血容量:

 分子量大不易透出血管外,产生胶体渗透压,组织间水份转移至血管内而扩容。用于低血容量性休克,以中分子量为佳。

 2.易从肾小球滤过而不被肾小管重吸收,发挥渗透性利尿作用。

 3.阻止红细胞和血小板聚集:附着于红细胞和血小板表面,阻止红细胞和血小板聚集,具有改善微循环,用于防止DIC形成和血栓栓塞性疾病如脑血栓形成和心肌梗塞。

氟虫腈在家禽上的应用谁知道,具体传授一下。

醋酸乙酯和乙酸乙酯是一样的,详细解释如下:

1、乙酸乙酯是无色透明液体,低毒性,有甜味,浓度较高时有刺激性气味,易挥发,对空气敏感,能吸水分,使其缓慢水解而呈酸性反应。

2、乙酸乙酯别称醋酸乙酯、甜菜糖蜜滓,化学式C4H8O2。

请教化学题,高手在哪里?

我国目前已经成为全球主要农药生产与消费国家之一,但是生产品种主要以传统和仿制的中低档品种为主。我国农药生产与开发与发达国家和地区相比存在相当的差距,尤其是技术开发水平低,新农药的创制与开发本身难度大、周期长、投入大;尽管经过多年研究与开发,我国已经开发出部分拥有自主知识产权的创制农药,但是真正走入市场的并不多;面对如此局面,我国农药除加大创制研发力度外,还应高度重视开发一些具有市场前景的专利过期或即将过期的重要农药品种。本文将主要介绍一些专利过期不久或即将过期的一些重要农药品种及其合成所需中间体开发与生产情况,为国内开发与生产这些农药及中间体提供参考。

1 氟虫腈(fipronil)

由法国罗纳-普朗克公司开发,获中国专利授权(CN86108643),该化合物专利在2006年12月19日到期;同时,拜耳公司对氟虫腈及其中间体的制备方法也在我国获得专利授权(CN95100789.0),此项专利的有效期将持续到2015年。

氟虫腈是一种苯基吡唑类广谱杀虫剂,主要是阻碍昆虫γ-氨基丁酸控制的氟化物代谢,具有触杀、胃毒和中度内吸作用,对鳞翅目、蝇类和鞘翅目等一系列害虫具有很高的杀虫活性,与现有杀虫剂无交互抗性。氟虫腈2005年全球销售额为4.2亿美元,在杀虫剂品种销售额排名第4。

目前氟虫腈工业化生产合成路线主要有两条,一是以2,6-二氯-4-三氟甲基苯胺为原料,经过重氮化得到重氮盐,再与2,3-二氰基丙酸乙酯反应得到;二是以2,6-二氯-4-三氟甲基苯肼为原料与富马腈反应,再氧化得到产品。

1.1 2,6-二氯-4-三氟甲基苯胺

2,6-二氯-4-三氟甲基苯胺主要合成路线有三条:①对三氟甲基苯胺法。对三氟甲基苯胺在溶剂中直接氯化得到2,6-二氯-4-三氟甲基苯胺。该法简单方便,但是对三氟甲基苯胺价格较贵,生产成本比较高,国外主要采用该法生产。②对氯三氟甲苯法。对氯三氟甲苯与二甲基甲酰胺和NaNH2在一定温度和压力下反应得到N,N-二甲基对三氟甲基苯胺,然后在光照下氯化,脱甲基并环上氯化得到目的产品。该法步骤较长,''三废''量较大。③3,4-二氯三氟甲苯法。以3,4-二氯三氟甲基苯胺为原料,与二甲基甲酰胺及氢氧化钠在压力釜中反应,在光照条件下氯化脱甲基并环上氯化得到产品。目前国内多家科研机构研究与开发此路线。此路线更趋于合理,产品质量高,''三废''量有一定减少。

1.2 2,6-二氯-4-三氟甲基苯肼

目前研究主要方向是以对氯三氟甲基苯为原料,在三氯化铁存在下深度氯化得到3,4,5-三氯三氟甲苯,然后与水合肼反应得到2,6-二氯-4-三氟甲基苯肼。

1.3 2,3-二氰基丙酸乙酯

2,3-二氰基丙酸乙酯合成方法,主要有分步法和一步法两种。分步法生产过程较为繁琐,生产过程中产生对人体有害的剧毒品且''三废''量比较大,因此目前主要采用一步法生产。一步法合成工艺为:将和溶剂无水乙醇混合,充分溶解后,加入多聚甲醛,溶解后接着加入氰乙酸乙酯,、多聚甲醛、氰乙酸乙酯投料比例为1:1:0.91(m:m)。然后使用盐酸酸化后,再经过萃取水洗得到粗品,最后精馏去除溶剂得到产品。目前国内泰州天源化工有限公司等数家企业采用该法生产2,3-二氰基丙酸乙酯。

2 溴虫腈(chlorfenapyr)

由美国氰胺公司开发,获中国专利授权(CN88106516.1),该专利将在2008年7月28日到期。德国巴斯夫公司在中国获得虫螨腈原药和10%虫螨腈悬浮剂临时登记。目前国内江苏龙灯化学有限公司和广东德利生物科技公司有相关登记。

溴虫腈是一种新型吡咯类广谱杀虫杀螨剂,在植物表面渗透性强,有一定内吸活性,兼有胃毒和触杀作用,可以防治多种鳞翅目、双翅目、鞘翅目、半翅目害虫和螨类,并可有效防治对氨基甲酸酯类、有机磷类和拟除虫菊酯类杀虫剂产生抗性的昆虫。

溴虫腈的合成方法主要有:①2-对氯苯基-5-三氟甲基吡咯-3-腈在光照下与溴反应,再与乙醇钠反应得到;②芳基吡咯腈在叔丁醇钾作用下,在四氢呋喃中与氯甲基乙基醚反应;③芳基吡咯腈在DMF、三氯氧磷、三乙胺存在下与二乙氧基甲烷反应得到。其中主要中间体为芳基吡咯腈,国内外研究主要集中以2-对氯苯基-5-三氟甲基吡咯-3-腈为原料的路线上。2.1 2-对氯苯基-5-三氟甲基吡咯-3-腈

有关芳基吡咯-3-腈专利报道比较多,国外公司一般采用2-对氯苯基甘氨酸为原料,三氟乙酸酐为三氟乙酰化剂,并关环成4-对氨基苯基-2-三氟甲基吡唑啉-5-酮,再与2-氯丙烯腈反应生成2-对氯苯基-5-三氟甲基吡咯-3-腈。国外在我国申请不少专利,如有三氯化磷和三乙胺存在下用三氟乙酸进行三氟乙酰化,或用三氟乙酰氯代替三氟乙酸反应的,也有选择合适的极性溶剂和碱等。

国外也有研究人员采用对氯苯基三氟乙酰胺基腈为原料,在酸存在下与酰卤反应生成恶唑胺的酰化衍生物,继而在碱性条件下与2-氯丙烯腈反应得到2-对氯苯基-5-三氟甲基吡咯-3-腈。

国内许多科研机构也进行了大量研究,如郑州大学和大连理工大学,以对氯苄胺为基础原料,在三氯化磷存在下与三氯乙酸反应,三氟乙酰化得到N-对氯苄基三氟乙酰胺;然后在三氯氧磷存在下通过氯化得到对氯苄基氯三氟乙酰亚胺;在碱的存在下对氯苄基氯三氟乙酰亚胺与氯代丙烯腈发生1,3偶极环加成反应,区域定向性地得到2-对氯苯基-5-三氟甲基吡咯-3-腈。该路线尽管步骤比较多,但是原料价廉易得,国此具有较高的应用开发价值。

国内还有一些文献报道以对氯苯基氨基丙烯腈经过溴化后与三氟甲基丙酮环合得到2-对氯苯基-5-三氟甲基吡咯-3-腈,尽管该法简单,但是原料来源比较困难。

3 四氟苯菊酯(transfluthrin)

该品种由拜耳公司开发,获中国专利授权(CN88100834),该专利将在2008年2月11日到期。拜耳公司在我国获得拜奥灵原药的临时登记,国内相关登记企业有江苏常州康泰化工有限公司和扬农化工股份有限公司。四氟苯菊酯是一种高效、低毒的卫生用拟除虫菊酯杀虫剂,具有吸入、触杀和驱避活性,对蚊虫具有快速击倒作用,用作多种蚊香、驱蚊片的原料,也可以有效防治苍蝇、蟑螂和白粉虱,其药效远高于烯丙菊酯。由于常温下的饱和蒸气压比较高,四氟苯菊酯还可用于制备野外和旅游用的杀虫产品,从而将卫生杀虫剂的应用从室内拓展到室外。

四氟苯菊酯合成主要是以2,3,5,6-四氟苄醇为原料,在甲苯作为溶剂的情况下与吡啶和二氯菊酰氯进行反应制得。其中四氟苄醇为关键的中间体,二氯菊酰氯则为多种拟除虫菊酯通用型中间体,国内山东大成农药化工股份有限公司等多家企业已经生产,因此主要介绍关键中间体四氟苄醇的合成。

四氟苄醇合成难度比较大,国外文献报道主要有两条路线生产:①采用四氟苯甲酸或者四氟苯甲醛为原料合成四氟苄醇,如欧洲专利介绍,以1,2,4,5-四氟苯与正丁基锂反应,然后与二氧化碳作用制备2,3,5,6-四氟苯甲酸,再利用LiAlH4还原制备2,3,5,6-四氟苄醇。该法过程相对比较简单,但是反应条件苛刻,原料来源比较困难;②日本和国内一些专利文献报道则采用2,3,5,6-四氯对苯二腈为原料合成四氟苄醇。具体过程以二甲基甲酰胺以为溶剂,四氯对苯二腈与无水氟化钾进行亲核取代反应,生成2,3,5,6-四氟苯腈;然后在80%浓硫酸存在下,四氟苯腈进行水解反应得到四氟对苯二甲酸;四氟对苯二甲醇在三丁胺和氢氧化钠存在下发生脱羧反应得到四氟苯甲酸;四氟苯甲酸在甲苯作为溶剂的情况下,与氯化亚砜发生酰氯化反应得到四氟苯甲酰氯,在四氢呋喃作为溶剂的情况下,四氟苯甲酰氯与硼氢化钠催化还原得到四氟苄醇。

目前国内江苏扬农化工股份有限公司和江苏激素研究所等能够生产四氟苄醇。

4 唑螨酯(fenpyfoximate)

该品种由日本农药株式会社开发,获中国专利授权(CN86108691),此专利于2006年12月26日到期。日本农药株式会社还在中国获得唑螨酯原药、13%炔螨•唑螨水乳剂等多种产品登记。国内山东栖霞通达化工有限公司和江苏龙灯化学有限公司也有制剂登记。

唑螨酯是一种苯氧吡唑类杀螨剂,高剂量时可以直接杀螨类,低剂量可以抑制类蜕皮或者产卵,具有击倒和抑制蜕皮作用,无内吸作用,可以防治多种螨类,尤其是多种果树上的叶螨和红蜘蛛,对幼螨和若螨具有优良活性,对天敌比较安全,对蜜蜂无不良影响,对家蚕有拒食作用。

唑螨酯合成主要以1,3-二甲基吡唑酮-5为原料,经过1,3-二甲基-5-氯吡唑甲醛-5、1,3-二甲基-5-苯氧基吡唑甲醛-5得到1,3-二甲基-5-苯氧基吡唑肟-5,然后与中间体对氯甲基苯甲酸叔丁酯进行反应得到唑螨酯。其中重要的中间体为1,3-二甲基吡唑酮-5和对氯甲基苯甲酸叔丁酯。

4.1 1.3-二甲基吡唑酮-5

国内外文献报道吡唑酮合成主要采用无水甲基肼,并以无水乙醇或甲醇作为溶剂进行吡唑酮的环化反应。由于无水甲基肼价格昂贵,且运输和使用也极不安全,国内研究人员选用了甲基肼水溶液为起始原料合成1,3-二甲基吡唑酮-5,具体过程为:40%甲基肼水溶液与乙酰乙酸乙酯在75℃下进行环化反应得到粗1,3 -二甲吡唑酮-5,产物经过重结晶纯化。

国外专利文献也介绍了1,3-二甲基吡唑酮-5的其他合成方法:①以水为反应介质,用氢氧化钠的水溶液中和硫酸甲基肼,不分离出中和产生的硫酸钠副产物,直接和乙酰乙酸乙酯反应,得到产物;但是收率比较低;②以乙醇为反应介质,用氢氧化钠的乙醇溶液中和硫酸甲基肼,不分离副产物,直接与乙酰乙酸乙酯反应,得到1,3-二甲基吡唑酮-5,收率比较高。

4.2 对氯甲基苯甲酸叔丁酯

该中间体合成相对比较简单,工业化生产一般以叔丁醇为原料,与吡啶和对氯甲基苯甲酰氯在室温下进行反应,反应后加入一定量的水,然后用甲苯萃取有机相,分离出有机层后进行蒸馏脱去甲苯,得到对氯甲基苯甲酸叔丁酯,进一步纯化得到精制产品。

5 嘧菌酯(azoxystrobin)

该品种是由先正达开发,获中国专利授权(CN1047286),该专利将于2010年2月8日到期。在美国、欧洲、日本等数十个国家有登记和销售,嘧菌酯2005年全球销售额达到6.35亿美元。

嘧菌酯是模仿天然产物Strobilurin A化学结构而产生的新型高效广谱甲氧基丙烯酸酯类杀菌剂,嘧菌酯对几乎所有各真菌纲病害如白粉病、锈病、颖枯病、网斑病、黑星病、霜霉病、稻瘟病等数十种病害均具有很好的活性。具有保护、治疗、铲除、渗透和内吸活性,适宜于禾谷类、水稻、多种果树和蔬菜杀菌抗菌,对地下水和环境安全。

嘧菌酯合成路线主要分为两种:①先合成中间体(E)-3-甲氧基-2-(2-羟基苯基)丙烯酸甲酯,然后分别与4,6-二氯嘧啶、水杨腈反应生成最终产物;②4,6-二氯嘧啶先与水杨腈反应后再与(E)-3-甲氧基-2-(2-羟基苯基)丙烯酸甲酯反应得到嘧菌酯。两种方法中(E)-3-甲氧基-2-(2-羟基苯基)丙烯酸甲酯是合成嘧菌酯的关键中间体。

文献报道(E)-3-甲氧基-2-(2-羟基苯基)丙烯酸甲酯的合成路线比较多,但是常用、具有工业化前景的主要是邻羟基苯乙酸为原料经过3步反应得到丙烯酸甲酯的路线,具体工艺过程为:将邻羟基苯乙酸、乙酸酐先进行反应,然后在氮气保护下,与原甲酸三甲酯反应,分离出低沸点物质,将剩下混合物加入甲醇后,加热回流然后冷却结晶得到中间产物3-(α-甲氧基)亚甲基苯并呋喃-2(3H)-酮(Ⅰ);将甲醇钠、四氢呋喃和甲醇混合后冷却,在氮气保护下分批加入上述反应得到的化合物Ⅰ中,然后进行成环反应得到(E)-3-甲氧基-2-(2-羟基苯基)丙烯酸甲酯。有的文献报道合成(E)-3-甲氧基-2- (2-羟基苯基)丙烯酸甲酯可以选用乙酸甲酯、N,N-二甲基甲酰胺等溶剂。

6 烟嘧磺隆(nicosulfuron)

该品种由日本石原产业株式会社开发,获得中国专利授权(CN87100436),该专利于2007年1月27日到期。日本石原产业株式会社在中国获烟嘧磺隆原药和多种制剂的登记,国内相关登记企业有浙江金牛农药有限公司(80%烟嘧磺隆可湿性粉剂、40g/L烟嘧磺隆悬浮剂)和天津中农化农业生产资料有限公司(40g/L烟嘧磺隆悬浮剂)。

烟嘧磺隆是一高效玉米田选择性苗后除草剂,是目前磺酰脲类除草剂中销售额最大的品种,2005年全球销售额2.38亿美元。低剂量苗后使用能有效防除玉米田多种一年生禾本科杂草、阔叶杂草及莎草科杂草,其被叶和根迅速吸收,并通过木质部和韧皮部迅速传导,玉米对该药物有较好耐药性,该药剂对哺乳动物毒性低。

国外专利报道烟嘧磺隆主要从2-氨基-4,6-二甲氧基嘧啶在三乙胺存在下与光气反应生成相应的异氰酸酯,再与2-氨磺酰基-N,N-二甲基烟酰胺在乙腈中反应制得。文献还报道其他多种合成路线,但是多数路线均涉及重要的中间体2-氨基-4,6-二甲氧基嘧啶和2-氨磺酰基-N,N-二甲基烟酰胺。

6.1 2-氨基-4,6-二甲氧基嘧啶

2-氨基-4,6-二甲氧基嘧啶是磺酰脲类除草剂的重要中间体,以其为原料除合成烟嘧磺隆外,还用于合成苄嘧磺隆、吡嘧磺隆、嘧啶磺隆、玉嘧磺隆等。该中间体合成主要采用硝(盐)酸胍与丙二酸二乙酯反应制得。目前国内开发比较成熟的工业技术是采用硝酸胍与丙二酸二乙酯合成。具体工艺过程:在催化剂乙醇钠存在下,硝酸胍与丙二酸二乙酯反应得到2-氨基-4,6-二羟基嘧啶;2-氨基-4,6-二羟基嘧啶在溶剂存在的情况下,与三氯氧磷反应得到2-氨基- 4,6-二氯嘧啶;二氯嘧啶与甲醇钠发生甲氧基化反应得到2-氨基-4,6-二甲氧基嘧啶。目前国内有企业采用该法生产,生产过程中产生一定数量的''三废'',有待进一步改进与完善。

6.2 2-氨磺酰基-N,N-二甲基烟酰胺

2-氨磺酰基-N,N-二甲基烟酰胺国内文献报道的合成路线主要采用2-氯烟酸为原料合成,也有专利报道以2-羟基-2-氰基吡啶为原料,但是该原料供应紧张,价格昂贵,不适合工业化生产。国外专利报道以2-氯烟酸为原料,用氯气对2-位的巯基进行氧化后,用Al(CH3)3及NH(CH3)2进行3-位的酰胺化得到目的产物。国内研究人员在此基础上进行改进,提高收率,目前已具备工业化生产水平。具体工艺过程:2-氯烟酸、氯化亚砜及二甲胺反应得到2-氯-N,N-二甲基烟酰胺(Ⅰ);化合物Ⅰ与Na2S•9H2O及S加热反应得到2-巯基-3-N,N-二甲基烟酰胺(Ⅱ);化合物Ⅱ溶解于氨水中,然后在酸性条件下与过氧化氢及次氯酸钠发生反应得到2-氨磺酰基-N,N-二甲基烟酰胺。该工艺以2-氯烟酸为原料经过四步反应合成目的产物,收率可以达到86%以上,反应条件比较温和,反应中使用的有机溶剂均可回收套用。

7 吡螨胺(tebufenpyrad)

该品种由日本三菱化成株式会社开发,获中国专利授权(CN88102427),该专利将于2008年4月23日到期。必螨立克10%可湿性粉剂曾在中国获得临时登记(LS93021)。

吡螨胺是一种吡唑酰胺类新型杀虫杀螨剂,具有独特的化学性质和新颖的作用方式,对各种螨类的各生育期均有速效和高效,持效期长、毒性低、无内吸性,具有优异的越层渗透活性,对目标物具有极佳的选择性,能控制经药剂处理的植株中未接触药剂部位上的害螨,这是其他杀螨剂所没有的功能。与常用的杀螨剂无交互抗性,对蚜虫、叶蝉、粉虱及鳞翅目、半翅目害虫也有一定防治效果。

吡螨胺主要从吡唑甲酰氯与对叔丁基苄胺反应得到,其中对叔丁基苄胺是关键中间体。

有关对叔丁基苄胺的合成文献报道比较多,主要有:①日本三菱化成公司主要采用对叔丁基苯甲醛与氨在催化剂作用下发生还原反应得到,该法可以制得高纯度对叔丁基苄胺,但是反应需要在高压下进行,对设备要求比较高,投资也比较大;②国内研究人员开发Delepine反应,以对叔丁基苄氯与乌洛托品反应,形成的季铵盐在甲醇-盐酸中水解生成对叔丁基苄胺,该法反应条件相对温和,适合工业化生产。

国内浙江大学及浙江工业大学研究人员对Delepine反应进行反复实验,具体工艺过程如下,对叔丁基苄氯与乌洛托品在仲丁醇作为溶剂下进行反应,然后加入盐酸和甲醇继续反应,反应混合物冷却过滤,滤液浓缩得到土**固体后,加入一定量的水溶解,再用氢氧化钠进行碱化,析出大量的**液体,然后用氯仿萃取**液体得到对叔丁基苄胺。优化反应条件为:反应温度40℃,对叔丁基苄氯与乌洛托品投料比为1:1.2(m:m)。

8 烯啶虫胺(nitenpyram)

该品种由日本武田公司开发,获得中国专利授权(CN88104801.1),该专利将于2008年8月1日到期。国内相关登记企业有江苏南通江山农药化工股份有限公司和江苏连云港立本农药化工有限公司,未查到外国公司在中国登记。

烯啶虫胺属于烟酰亚胺类杀虫剂,具有独特的化学和生物性质,对害虫的突触受体具有神经阻断作用,对各种蚜虫、粉虱、水稻叶蝉显示卓越的活性,并同时具有高效、低毒、内吸、无交互抗性、对作物无药害等优点,广泛用于水稻、果树、蔬菜和茶防治多种害虫。

烯啶虫胺合成是以2-氯-5-甲基吡啶为原料经过N-乙基-2-氯-5-吡啶甲基胺,然后与1,1-二甲硫基-2-硝基乙烯和乙醇混合液进行反应,再与甲胺水溶液反应得到。其中关键中间体为2-氯-5-氯甲基吡啶。

2-氯-5-氯甲基吡啶是重要的农药中间体,不仅用于合成烯啶虫胺,还是其他重要烟碱类农药吡虫啉、啶虫脒、噻虫啉等的中间体。2-氯-5-氯甲基吡啶的研究与生产随着吡虫啉、烯啶虫胺的研究而兴起。国内外工业化生产的主要方法有:①以3-甲基吡啶为原料经过N-氧化物反应得到3-氯甲基吡啶,然后定向氯化得到;②环合法,以苄胺和丙醛反应,经过环氯化得到3-氯甲基吡啶,再经过氯化得到;③国内研究人员在美国瑞利公司开发的环戊二烯直接环合基础上,开发了以环戊二烯为原料通过关环反应直接制备2-氯-5-氯甲基吡啶,该路线原料易得,生产成本比较低,目前国内大连凯飞化工股份有限公司、江苏化工农药集团公司、江苏克胜股份有限公司多采用该法生产;④江苏农药研究所开发了以吗啉为原料的生产路线,以吗啉为原料经过N-丙烯基吗啉、1-氯-2-(4-吗啉)-3-甲基环丁基腈、2-氯-4-甲酰基戊腈、2-氯-5-甲基吡啶等中间体合成2-氯-5-氯甲基吡啶,该法具有原料成本低、反应条件温和等优点,具有工业化前景。

9 双草醚(bispyribac-sodium)

该品种由日本组合化合物公司开发,获中国专利授权(CN88108904.4),该专利将于2008年12月22日到期。日本组合化学公司还在中国获得双草醚原药(PD20040015)和10%双草醚悬浮剂(PD20040014)登记。国内相关登记企业有江苏激素研究所有限公司和上海菱农化工有限公司等。

双草醚是一种嘧啶型水杨酸类广谱除草剂,通过阻碍支链氨基酸的生物合成而起作用,主要在水稻直接田中使用,能有效防除一年生及多年生禾本科和阔叶杂草,特别能防除1~7叶期的稗草,且用量极低,具有广阔的应用前景。该农药在日本、欧美等国家已申请登记。

双草醚的合成主要有两条路线,一是非酯基保护法,由2,6-二羟基苯甲酸和2-取代-4,6-二甲氧基嘧啶在碱性条件下反应生成双草醚;二是酯基保护法,由2,6-二羟基苯甲酸先酯化,然后酯化物与2-取代-4,6-二甲氧基嘧啶在碱性条件下反应生成双草醚的酯,再经过催化加氢、中和得到双草醚。其中关键的中间体为2-取代-4,6-二甲氧基嘧啶,通常选用4,6-二甲氧基-2-甲硫基嘧啶。

文献报道4,6-二甲氧基-2-甲硫基嘧啶的合成路线主要有:①碘甲烷法,碘甲烷与4,6-二羟基-2-甲硫基嘧啶反应制备,该法收率不高,同时磺甲烷价格昂贵;②硫酸二甲酯法,硫酸二甲酯与4,6-二羟基-2-巯基嘧啶反应,该法收率比较低,且''三废''排放量较大;③3-氨基-1,3-二甲氧基-2-甲磺酰基嘧啶与过氧化氢氧化制备,该法原料来源困难;④浙江工业大学研究人员开发以丙二酸二乙酯和硫脲为原料的合成路线,在甲醇钠存在下缩合成4,6-二羟基-2-嘧啶硫酸钠,再经过甲基化、氯化、甲氧基化等一系列反应得到4,6-二甲氧基-2-甲硫基嘧啶,尽管步骤较多,但是反应条件温和,原料价廉易得,具有工业化应用前景。

上面介绍了部分农药及其中间体的合成,这些农药具有一些共同特点,就是国外公司开发,且在中国取得专利授权,同时这些品种都在中国已经或曾经登记过,同时专利已经到期或即将到期。专利一旦到期可以进行仿制,同时由于在国内取得登记或者临时登记,具有一定推广应用基础,产品开发生产后比较容易被市场所接受,可以大大缩短进入市场的时间。而这些农药开发的关键在于重要中间体的开发与研究,因此国内相关科研机构和农药生产企业,应积极跟踪国外专利农药法律保护状态,加强中间体开发研究,期待改进和完善中间体合成工艺,降低中间体生产成本,为生产这些高效低毒具有良好市场前景的农药打下坚实基础。

1. 二氯乙酸 氯乙酸 甲酸 乙酸 原因是其中二氯甲基吸电子能力大于一氯甲基,但都使羧基的酸性增强。而甲基是给电子基团,使羧基的酸性减少

2. 乙酰氯 乙酸酐 乙酸乙酯 乙酰胺 原因是离去能力,氯原子大于羧基,大于烷氧基,大于氨基

3. 乙二酸 苯甲酸 乙酸 原因二元酸大于一元酸,芳香酸大于脂肪酸

4.这个不是很确定 我认为是 苯甲酰氯 丙烯酰氯 乙酰氯

5.乙酰氯 乙酸酐 乙酸 原因同问题2