吖啶类化合物-吖啶的合成

问题一:石油中的有毒物质对人体有什么伤害? 石油的原油属低毒类物质, 接触限值为10mg / 立方米(前苏联MAC) ,可以通过为吸入、食入、皮肤吸收。当吸入大量的油蒸气时,也能引起人的神经麻痹。石油是一个混合物,含有很多有毒的物质。例如,含有的硫化氢、苯和汽油煤油等烃类,均可引起急性中毒或者慢性中毒,甚至导致再生障碍性贫血、癌症或者直接导致人员的亡。工作中吸入、误服或经皮肤接触一定时间以后出现中毒症状, 使人慢性中毒或感染慢的石油成分, 称为低毒油料。包括煤油、柴油、燃料油、石油沥青类, 以及含有毒添加剂的润滑油等。矿油和添加剂对人体有 *** 、麻醉、腐蚀、致癌作用。例如皮肤长时间接触煤油有灼热感,出现红斑、疤症长时间接触汽油、柴油会引起皮肤干燥、龟裂及变红。石油沥青是原油蒸馏后的残渣。根据提炼程度的不同, 在常温下成液体、半固体或固体。沥青中含有各种有机挥发物, 这些物质能刺唬人体与皮肤。其中对人体危害性较大的有以下几种:1)吖啶。对皮肤及粘膜均有 *** 性。腰椎盘膨出的症状,其尘粒及气体极易使人打喷嚏, 皮肤与之接触时有发痒及烧灼感。吖啶是光感作用的重要因素, 故在阳光下接触时症状更加剧烈。2)酚类主要是石碳酸, 对人体组织有强烈的腐蚀作用, 与皮肤、粘膜接触时, 能造成严重的烧伤, 引起皮肤及粘膜发炎。3)苯是煤焦油的一种重要成分。苯的蒸气可使人发生头痛、晕眩、抽搐及昏迷等症状。4)吡啶。该物质对皮肤有较强的干燥作用, 易引起皮肤炎及眼炎,甚至使人呼吸及脉搏增快、头痛、恶心等。5)蒽类。其毒性与吖啶相似。粗制的蒽可以引起皮肤损伤和皮肤癌。

问题二:石油为什么会里面有毒 液化石油气属于易燃易爆物质,是丙烷、丁烷、异丁烷、丁二烯、异丁烯等低分子烃类组成的混合物,它是由原油蒸馏或其它石油加工过程中所得到的各类烃类混合物。 常温常压下,为无色易燃有毒气体,通常民用液化石油气添加恶臭剂后,有特殊臭味。气态相对密度:1.5-2,液化石油气在常温常压下为气体,低温或加压两种方法兼用就变成棕**液体,液态相对密度约0.5,微溶与水,由液相变气相,体积扩大250-350倍左右。易聚集在低洼处。液化石油气与空气混合形成爆炸混合物,遇火或高温燃烧爆炸。爆炸极限一般约为1.5%-10%,(由于组成、成分不同,爆炸上限有时达到33%);容器最大充装量80%。

问题三:经常闻原油味会得什么病 原油中含有苯有毒物质,苯对中枢神经系统产生麻痹作用,引起急性中毒。重者会出现头痛、恶心、呕吐、神志模糊、知觉丧失、昏迷、抽搐等,严重者会因为中枢系统麻痹而亡。少量苯也能使人产生睡意、头昏、心率加快、头痛、颤抖、意识混乱、神志不清等现象

问题四:石油的含那些有毒物质 1).石油的成分

石油又称原油,是从地下深处开采的棕黑色可燃粘稠液体。主要是各种烷烃、环烷烃、芳香烃的混合物。它是古代海洋或湖泊中的生物经过漫长的演化形成的混合物,与煤一样属于化石燃料。它的性质因产地而异,密度为0.8 ~ 1.0 克/厘米3,粘度范围很宽,凝固点差别很大(30 ~ -60°C),沸点范围为常温到500°C以上,可容于多种有机溶剂,不溶于水,但可与水形成乳状液。 组成石油的化学元素主处是碳 (83% ~ 87%)、氢(11% ~ 14%),其余为硫(0.06% ~ 0.8%)、氮(0.02% ~ 1.7%)、氧(0.08% ~ 1.82%)及微量金属元素(镍、钒、铁等)。由碳和氢化合形成的烃类构成石油的主要组成部分,约占95% ~ 99%,含硫、 氧、氮的化合物对石油产品有害, 在石油加工中应尽量除去。不同产地的石油中,各种烃类的结构和所占比例相差很大, 但主要属于烷烃、环烷烃、芳香烃三类。 通常以烷烃为主的石油称为石蜡基石油;以环烷烃、芳香烃为主的称环烃基石油;介于二者之间的称中间基石油。我国主要原油的特点是含蜡较多,凝固点高,硫含量低, 镍、氮含量中等,钒含量极少。除个别油田外,原油中汽油馏分较少,渣油占1/3。组成不同类的石油,加工方法有差别,产品的性能也不同,应当物尽其用。大庆原油的主要特点是含蜡量高,凝点高,硫含量低,属低硫石蜡基原油。

2).石油为很多化学有机物的混合物,其成分一般都对人体有害.

3).除去这些有害物质,可选用高密度的果核壳、椰壳为原料,经物理法精制而成的石油化工活性炭.其主要用于:石油工业脱色提纯,能除去石油中的有害物质,也可以装填各种防毒面具与滤毒器材,在合成工业上可以用来做催化剂或载体等.

问题五:石油原油对人体有哪些危害? 由于苯的挥发性大,暴露于空气中很容易扩散。人和动物吸入或皮肤接触大量苯进入体内,会引起急性和慢性苯中毒。有研究报告表明,引起苯中毒的部分原因是由于在体内苯生成了苯酚。

苯对中枢神经系统产生麻痹作用,引起急性中毒。重者会出现头痛、恶心、呕吐、神志模糊、知觉丧失、昏迷、抽搐等,严重者会因为中枢系统麻痹而亡。少量苯也能使人产生睡意、头昏、心率加快、头痛、颤抖、意识混乱、神志不清等现象。摄入含苯过多的食物会导致呕吐、胃痛、头昏、失眠、抽搐、心率加快等症状,甚至亡。吸入20000ppm的苯蒸气5-10分钟便会有致命危险。

长期接触苯会对血液造成极大伤害,引起慢性中毒。引起神经衰弱综合症。苯可以损害骨髓,使红血球、白细胞、血小板数量减少,并使染色体畸变,从而导致白血病,甚至出现再生障碍性贫血。苯可以导致大量出血,从而抑制免疫系统的功用,使疾病有机可乘。有研究报告指出,苯在体内的潜伏期可长达12-15年。

妇女吸入过量苯后,会导致月经不调达数月,卵巢会缩小。对胎儿发育和对男性生殖力的影响尚未明了。孕期动物吸入苯后,会导致幼体的重量不足、骨骼延迟发育、骨髓损害。

对皮肤、粘膜有 *** 作用。国际癌症研究中心(IARC)已经确认为致癌物。

接触限值:

* 中国 MAC 40 mg/m3(皮)

* 美国ACGIH 10ppm, 32mg/m3 TWA: OSHA 1ppm, 3.2 mg/m3

毒性:

* LD50: 3306mg/kg(大鼠经口);48mg/kg(小鼠经皮)

* LC50: 10000ppm 7小时(大鼠吸入)

当然,由于每个人的健康状况和接触条件不同,对苯的敏感程度也不相同。嗅出苯的气味时,它的浓度大概是1.5ppm,这时就应该注意到中毒的危险。在检查时,通过尿和血液的检查可以很容易查出苯的中毒程度。

*** ,自由的百科全书

跳转到: 导航, 搜索

IUPAC中文命名

常规

分子式 C6H6

SMILES C1=CC=CC=C1

分子量 78.11 g/mol

外观 无色透明易挥发液体

气味 有强烈芳香气味。12ppm浓度时可检测到油漆稀释剂气味

CAS号 71-43-2

RTECS号 CY1400000

IMDG规则页码 3185

UN编号 1114

性质

STP下的密度 0.8786 g/cm3

溶解度 0.18 g/ 100 ml 水

熔点 278.65 K (5.5 ℃)

沸点 353.25 K (80.1 ℃)

相态

三相点 278.5 ± 0.6 K

临界点 289.5℃

4.92MPa

熔解热

(ΔfusH) 9.84 kJ/mol

汽化热

(ΔvapH) 44.3 kJ/mol

燃烧热 3264.4 kJ/mol

危险性

闪点 -10.11℃(闭杯)

自燃 562.22℃

爆炸极限 1.2 - 8.0 %

摄取 可引起急性中毒,麻痹中枢神经,需要充分漱口,喝水,尽快洗胃。

吸入 可导致呼吸困难。严重者可能导致呼吸及心跳停止。

皮肤 变干燥,脱屑,皴裂,有的可能发生过敏性湿疹

眼睛 有 *** 性。需用大量清水冲洗

处理方式

* 危险性:

o 遇热、明火易燃烧、爆炸。

* 人身保护:

o 防护手套,防护服,浓度过高须配带防毒面具

* 稳定性:

o 能与氧化剂强烈反应。不能与乙硼烷共存。

* 储存:

o 阴凉,通风。远离火种、热源。防止阳光直射。密封储存。防止静电

液体性质

标准生成焓

(ΔfH0液) 48.95 ......>>

问题六:大豆原油能食用吗 不可以,大豆原油里还有杂质、含有蜡什么的忘记了反正不能吃,像村里的加工作坊加工的油基本上都是不在加工了,属于大豆原油,不可食用,要吃豆油请买成品油符合国家标准的,或者买油作坊通过压榨生产的大豆油。

大豆原油:未经任何处理的不能直接供人类食用的大豆油。

成品大豆油:经处理符合国家标准成品油质量指标和卫生要求的直接供人类食用的大豆油。

压榨大豆油:大豆经直接压榨制取的油。 浸出大豆油:大豆经浸出工艺制取的油。 转基因大豆油:用转基因大豆制取的油。 大豆原油:未经任何处理的不能直接供人类食用的大豆油。

成品大豆油:经处理符合国家标准成品油质量指标和卫生要求。

问题七:现货生物燃料和原油有什么区别 生物燃料(biofuel)泛指由生物质组成或萃取的固体、液体或气体燃料。可以替代由石油制取的汽油和柴油,是可再生能源开发利用的重要方向。

原油即石油,也称黑色金子,是一种粘稠的、深褐色(有时有点绿色的)液体。是石油刚开采出来未经提炼或加工的物质。

两者的区别是:

产生方式不同。生物燃料是利用作物秸秆、林业加工剩余物、畜禽粪便等有机物经人工加工后产生;原油是远古生物遗体在地层下经过千万年的变化而形成的。

燃烧产物不同。生物燃料燃烧后主要生成水和二氧化碳;原油燃烧除生成水和二氧化碳外还有二氧化硫和一氧化氮等有毒气体。

基因突变

打开煤焦油宝库

在欧洲,干馏煤以制取焦炭用于炼铁,是从18世纪初期开始的。随着煤焦化的发展,出现大量煤焦油,除了从其中提取照明灯用油外,只是少量用在铁路轨道的枕木防腐和作为橡胶的溶剂供涂敷防雨布用,大量又黑又臭的油污染着环境,促使化学家们分析研究煤焦油。

首先从煤焦油中分离出来的化学物质是萘。英国皇家研究院化学教授布兰德(William Thomas Brande,1788-1866)在1819年从蒸馏煤焦中发现一种白色结晶体,分析测定它是碳和氢的二元化合物。1820年英国化学工业企业家加登(Alexander Garden,1757-1829)也从煤焦油中获得这一物质。同年,英国牛津大学化学教授基德(John Kidd,1780-1851)将它命名为naphthalene,来自naphtha(石脑油)。石脑油是指石油、煤焦油的最先馏分,萘就是从这个馏分中分离出来的。这也说明了萘是最早从煤焦油中分离出来的。

萘是一种白色结晶体,易挥发,易升华(即易由固体直接转变成气体),具有特殊气味,能除虫防蛀,常代替樟脑用作驱虫剂。萘还是制造染料、药物等的原料。

英国著名化学家、物理学家法拉第在1826年分析了萘,确立它的化学式是C20H8(按碳的相对原子质量等于6计算得到,如果按现在相对原子质量等于12计算,即得出现代萘的正确化学式C10H8)。法拉第还制得萘的两种硫酸的衍生物。

接着1832年法国化学家杜马(Jean Baptiste Hndré Dumas,1800-1884)和他的学生罗朗(August Laurent,1807-1853)发表论说,叙述他们从煤焦油中分离出一种不同于萘的无色固体物,最初认为是萘的同分异构体,即分子式相同、结构式不同的两种化合物,称它为paranaphthalene(异萘)。后来确定它的化学式是C14H10,不同于萘,从希腊文anthrax(煤)命名它为anthracene,我们译成蒽。

蒽是无色固体,具有微弱的蓝色荧光,也会升华,是合成染料的原料。

用作非磁性金属表面探伤荧光剂;芘是合成染料的原料。

在这期间,1834年德国化学家龙格在煤焦油中添加酸溶液后加热,当溶液中和后分离出一种油,再将此油蒸馏分离成三部分,分别称为kyanol(德文,来自希腊文kyanos,蓝色)、pyrrol(德文,来自希腊文pyrros,红色)和leukol(德文,来自希腊文leukos,白色)。朗格将分离出油后的另一部分物质溶解在苛性碱溶液中,从该溶液中又分离出一种油,添加无机酸后又获得另一物质,称为karbols?ure(德文,石炭酸)。

到1843年,德国化学家霍夫曼(August Wilhelm von Hofmann,1818-1892)分析研究了朗格所发现的kyanol是苯胺,leukol是喹啉,karbls?ure是含有甲酚的不纯苯酚,pyrrol保留了它的名称,我们称为吡咯,又称氮杂茂。

苯胺是在1826年被德国化学制品商人恩弗多尔本(Otto Unverdorben,1806-1873)从干馏靛蓝中发现的,认识到它易与酸化合,形成结晶盐,就称它为kristallin(德文,结晶体)。到1840年,德国药剂师弗里茨舍(Carl Julius Fritzsche,1808-1871)将靛蓝与苛性钾作用后也得到苯胺,称它aniline,我们音译成“安尼林”,这一词来自阿拉伯文al-nil(蓝色物质,是葡萄牙人对靛蓝的称谓)。后来到1842年俄罗斯化学家齐宁利用硫化铵作用于硝基苯获得苯胺,称为benzidam(从benzen(苯)来)。霍夫曼在1843年从煤焦油中分离出一种碱性油状物,经过分析确定它和kristallin、aniline、benzidam以及kyanol是同一物质,确定它的化学式是C6H5NH2,保留了aniline这一名称。

苯胺是无色油状液体,遇漂白粉呈现蓝色,这就是龙格从希腊文中蓝色一词命名它的原因。苯胺是合成染料、药物、塑料等的原料。

喹啉后来在1842年由法国化学家热拉尔将马钱子碱、辛可宁、奎宁和苛性碱共同蒸馏取得,确定它的化学式是C9H7N,从quinine(奎宁)命名它为quinoline,我们从音译,又称氮杂萘。它是一种无色有特臭的油状液体,是合成药物的原料。

苯酚俗称石炭酸,1841年再次被罗朗从煤焦油中分离出来,确定它与龙格发现的石炭酸是同一物质。接着热拉尔加热水杨酸(邻羟基苯甲酸)和石灰制得苯酚,研究认为它不是真正的酸,而与醇相似,命名为phenol,表明其分子中含有pheny(苯基)和hydroxyl(羟基),分子式为C6H5OH。

苯酚是无色结晶体,具有特殊气味,在空气中会氧化而变成粉红色。苯酚是合成染料、塑料、农药的原料,医学上用作消毒防腐剂,用它制成药皂因它在空气中易氧化成粉红色就干脆制成红色。

甲酚后来在1851年由德国化学家斯塔德勒(G.St?deler)从母牛尿中发现。1855年英国大学学院化学系教授威廉森(Alexander William Williamson,1824-1904)的一个学生弗尔利(J.Fairlie)从煤焦油馏出的杂酚油中也发现了甲酚。杂酚油是复杂的混合物,直到1864年,德国化学家缪勒(Hugo Müller)发表分析杂酚油的结果,指出其中除含有苯酚、甲酚外,还含有苯三酚(C6H3(OH)3)等。

甲酚又称克利沙尔,是从西方名称cresol译音而来的,来自西方杂酚油的名词creosote。甲酚也用作消毒剂和农药。

龙格发现的吡咯在1851年被英国化学家安德森(Thomas Anderson,1819-1874)从骨焦油中再次发现,给出它的正确化学式C4H5N,吡咯是制药的原料。

苯也是在煤油中发现的。

在欧洲,一直到19世纪20年代,各国人们照明是点燃动植物油脂。有一种是鱼油,是将蒸馏鳕鱼、鲸鱼油获得的气体加压装瓶使用,在瓶底常常有残留气体凝结成的液体。1825年4月法拉第从这种液体中分离出一种液体,在80℃沸腾,在7.2℃凝固。法拉第分析了它的组成,是碳和氢的化合物,碳和氢的质量比为11.4:1,接近12:1。他采用氢的相对原子质量等于1,碳的相对原子质量等于6,得出这一化合物的分子式为C2H,称它为二碳化氢。他还研究了这一新化合物的一些性质:它与浓硫酸作用后生成一种烃基硫酸盐(Sulfovinate,RSO4M);它与氯气在日光照射下作用,生成盐酸和一种结晶固体物(六氯化苯,俗称六六六)。

1834年德国结晶学家、化学家米切里希Eilhard Mitscherlich,1794-1863)将1份安息香酸(苯甲酸)和3份消石灰共同蒸馏,得到法拉第发现的二碳化氢,将此化合物称为benzin(德文)。

安息香酸存在于安息香树胶中,是一种芳香的树脂,Styrax benzoin(安息香树科,拉丁名称)也就是benzin这一词的来源。德国化学家李必希(Justus Liebig,1803-1873)将此名改为benzol,至今保留在德文中。英文和法文中的benzene由此而来,我们从此词第一音节音译为苯。

1834年李必希指出苯存在于煤焦油中。霍夫曼也在1845年指出苯存在于煤焦油中。当时霍夫曼在英国皇家学院任教,指导他的学生曼斯费尔德(Charles Blachford Mansfield,1819-1855)分馏煤焦油提取苯,在1849年从煤焦油中不仅分离出大量苯,还分离出甲苯、二甲苯等物质。曼斯弗尔德后来却不幸于苯蒸气遇火发生的爆炸中,他在分馏煤焦油过程中创立(部)分(蒸)馏法,该法在分离煤焦油以及其他液体混合物各组分中起了重要作用。

苯的平面六角形结构式(图27-1)是德国化学家凯库勒(Friedrich August Kekulé,1829-1896)于1865年在研究元素化合价的同时提出来的。他在1860年发表的文章中还把苯、萘、蒽和它们的衍生物统称为芳香族化合物(aromatic compound)。芳香族化合物本来是指由各种香树脂中提取的具有芳香气味的物质,但是用气味作为分类物质的依据是不适合的,在经过研究苯、萘、蒽、酚、甲苯等的分子结构后,确定它们都是苯和苯的衍生物,因此用芳香族化合物统称,其实这些化合物中有些具有令人不愉快的臭味。

苯、萘、蒽等的命名在西方都采用“-ene”的词尾,我们都采用它们名称的第一音节译音,添加草字头,创造一个新字。五节环命名为茂。

萘、蒽等分子结构中具有多环,称为稠环化合物,是德国化学家格雷伯和利伯曼在1868年提出来的。

吡啶、喹啉等分子结构的环状结构中除碳原子外还含有氮、氧、硫等原子(图27-1),统称为杂环化合物,分别是德国化学家克尔纳(Wilhelm K?rner,1839-1925)和英国化学家杜瓦(James Dewar,1842-1923)在1869年确定的。

从煤焦油中分离出来的稠环化合物还有芴(fluorene,C13H10)和苊(acennaphthene,C12H10),是法国化学家贝特洛(Pierre Eugéne Marcellin Berthelot,1827-1907)分别在1867年和1872年从蒸馏煤焦油所得的粗蒽中发现的。芴是一种无色晶体,发放紫色荧光,因而从希腊文fluor(荧光)得名,是有机合成的原料。苊也是一种无色晶体,在贝特洛从煤焦油中分离出以前,在1866年从乙炔(acetylene)和萘(naphtalene)就合成了苊,命名为acetylonaphthalene,把乙炔和萘的两个名称连接在一起,后来把这一词简化成acenaphthene。苊是制造塑料、杀虫剂、杀菌剂的原料。

菲(phenanthrene,C14H10)是蒽的同分异构体,即与蒽具有相同的分子式,但结构式不同,是两种不同的化学物质。它在1873年前后分别由德国化学家菲蒂希(Rudolf Fittig,1835-1910)和奥斯特迈尔(E.Ostermeyer)以及格雷伯和格拉泽(Carl Andreas Glaser,1841-1935)分别从煤焦油所得的粗蒽中分离出来的,是有光泽的无色晶体,命名是由phenyl(苯基)和anthracene(蒽)构成。菲是制造染料炸药和药物的原料。

茚(indene,C9H8)是在1890年由德国化学家克拉默(G.Kr?mer)和斯皮克(A.Spiker)从煤焦油中分离出来的,最初没有认清它,直到1906年德国化学家蒂勒(F.K.Johannes Thiele,1865-1918)合成了茚,确定它是一种稠环芳香族碳氢化合物。茚是一种无色液体,用作油漆的溶剂。命名因其分子结构(图27-1)与吲哚(indole)相似而得名。

从煤焦油分离出来的杂环化合物还有吖啶、咔唑、噻吩、吲哚。

吖啶(cridine,C13H9N)又名氮杂蒽,这个“杂”字一般可略去,就称为氮蒽,是在1870年格雷伯和卡罗(Heinrich Caro,1834-1911)从煤焦油提取的粗蒽中发现的。它是一种无色结晶体,蒸气和溶液都有刺激气味,因而其命名来自拉丁文acr(刺激性的),再加上它类似吡啶(pyridine),就添加了-idine词尾。吖啶是制造染料的原料。

咔唑(carbazole,C12H9N)又名氮杂芴,1872年也是格雷伯和格拉泽从煤焦油提取的粗蒽中发现的,也是无色结晶体。它的命名表明了它的分子组成,是由hydrogen(氢)、carb(on)(碳)加azo(t)(氮,azot是氮气的法文名称)构成的,再加-ol词尾,表明和pyrrol(吡咯)相似。咔唑也是制染料的原料。

噻吩(thiophene,C4H4S)又名硫杂茂,是1882年德国化学家维克多?迈尔(Victor Meyer,1848-1893)从煤焦油中提取的粗苯中发现的一种含硫的杂环化合物。它是无色液体,命名来自希腊文thio(硫)和phene(苯)。噻吩是制造染料、药物的原料。

吲哚(indole,C8H7N)又名氮杂茚。它除存在于煤焦油中外,还存在于一些花的香精油中。吲哚是一种无色晶体,纯品稀释后具有新鲜的花香味,是制造靛蓝(indigo)的原料,因而得名。

化学发光剂有哪些?

基因突变

科技名词定义中文名称:基因突变 英文名称:gene mutation 定义:由于核酸序列发生变化,包括缺失突变、定点突变、移框突变等,使之不再是原有基因的现象。 应用学科:生物化学与分子生物学(一级学科);基因表达与调控(二级学科)

基因突变是指基因组DNA分子发生的突然的、可遗传的变异现象。从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。基因虽然十分稳定,能在细胞分裂时精确地复制自己,但这种稳定性是相对的。在一定的条件下基因也可以从原来的存在形式突然改变成另一种新的存在形式,就是在一个位点上,突然出现了一个新基因,代替了原有基因,这个基因叫做突变基因。于是后代的表现中也就突然地出现祖先从未有的新性状。

基因突变(gene mutation)是由于DNA分子中发生碱基对的增添、缺失或替换,而引起的基因结构的改变,就叫做基因突变。1个基因内部可以遗传的结构的改变。又称为点突变,通常可引起一定的表型变化。广义的突变包括染色体畸变。狭义的突变专指点突变。实际上畸变和点突变的界限并不明确,特别是微细的畸变更是如此。野生型基因通过突变成为突变型基因。突变型一词既指突变基因,也指具有这一突变基因的个体。

基因突变通常发生在DNA复制时期,即细胞分裂间期,包括有丝分裂间期和减数分裂间期;同时基因突变和脱氧核糖核酸的复制、DNA损伤修复、癌变和衰老都有关系,基因突变也是生物进化的重要因素之一,所以研究基因突变除了本身的理论意义以外还有广泛的生物学意义。基因突变为遗传学研究提供突变型,为育种工作提供素材,所以它还有科学研究和生产上的实际意义。

基因突变首先由T.H.摩尔根于1910年在果蝇中发现。H.J.马勒于1927年、L.J.斯塔德勒于1928年分别用X射线等在果蝇、玉米中最先诱发了突变。1947年C.奥尔巴克首次使用了化学诱变剂,用氮芥诱发了果蝇的突变。1943年S.E.卢里亚和M.德尔布吕克最早在大肠杆菌中证明对噬菌体抗性的出现是基因突变的结果。接着在细菌对于链霉素和磺胺药的抗性方面获得同样的结论。于是基因突变这一生物界的普遍现象逐渐被充分认识,基因突变的研究也进入了新的时期。1949年光复活作用发现后,DNA损伤修复的研究也迅速推进。这些研究结果说明基因突变并不是一个单纯的化学变化,而是一个和一系列酶的作用有关的复杂过程。

1958年S.本泽发现噬菌体T4的rⅡ基因中有特别容易发生突变的位点──热点,指出一个基因的某一对核苷酸的改变和它所处的位置有关。

1959年E.佛里兹提出基因突变的碱基置换理论,1961年F.H.C.克里克等提出移码突变理论(见遗传密码)。随着分子遗传学的发展和DNA核苷酸顺序分析等技术的出现,现在已能确定基因突变所带来的DNA分子结构改变的类型,包括某些热点的分子结构,并已经能够进行定向诱变。

不论是真核生物还是原核生物的突变,也不论是什么类型的突变,都具有随机性、低频性和可逆性等共同的特性。

普遍性

基因突变在自然界各物种中普遍存在。

随机性

T.H.摩尔根在饲养的许多红色复眼的果蝇中偶然发现了一只白色复眼的果蝇。这一事实说明基因突变的发生在时间上、在发生这一突变的个体上、在发生突变的基因上,都是随机的。以后在高等植物中所发现的无数突变都说明基因突变的随机性。在细菌中则情况远为复杂。在含有某一种药物的培养基中培养细菌时往往可以得到对于这一药物具有抗性的细菌,因此曾经认为细菌的抗药性的产生是药物引起的,是定向的适应而不是随机的突变。S.卢里亚和M.德尔布吕克在1943年首先用波动测验方法证明在大肠杆菌中的抗噬菌体细菌的出现和噬菌体的存在无关。J.莱德伯格等在1952年又用印影接种方法证实了这一论点。方法是把大量对于药物敏感的细菌涂在不含药物的培养基表面,把这上面生长起来的菌落用一块灭菌的丝绒作为接种工具印影接种到含有某种药物的培养基表面,使得两个培养皿上的菌落的位置都一一对应。根据后一培养基表面生长的个别菌落的位置,可以在前一培养皿上找到相对应的菌落。在许多情况下可以看到这些菌落具有抗药性。由于前一培养基是不含药的,因此这一实验结果非常直观地说明抗药性的出现不依赖于药物的存在,而是随机突变的结果,只不过是通过药物将它们检出而已。

稀有性

在第一个突变基因发现时,不是发现若干白色复眼果绳而是只发现一只,说明突变是极为稀有的,也就是说野生型基因以极低的突变率发生突变(一些有代表性的基因突变率见表)。在有性生殖的生物中,突变率用每一配子发生突变的概率,也就是用一定数目配子中的突变型配子数表示。在无性生殖的细菌中,突变率用每一细胞世代中每一细菌发生突变的概率,也就是用一定数目的细菌在分裂一次过程中发生突变的次数表示。据估计,在高等生物中,大约10^5~10^8个生殖细胞中,才会有1个生殖细胞发生基因突变。虽然基因突变的频率很低,但是当一个种群内有许多个体时,就有可能产生各种各样的随机突变,足以提供丰富的可遗传的变异。

可逆性

野生型基因经过突变成为突变型基因的过程称为正向突变。正向突变的稀有性说明野生型基因是一个比较稳定的结构。突变基因又可以通过突变而成为野生型基因,这一过程称为回复突变。从表中同样可以看到回复突变是难得发生的,说明突变基因也是一个比较稳定的结构。不过,正向突变率总是高于回复突变率,这是因为一个野生型基因内部的许多位置上的结构改变都可以导致基因突变,但是一个突变基因内部只有一个位置上的结构改变才能使它恢复原状。

少利多害性

一般基因突变会产生不利的影响,被淘汰或是亡,但有极少数会使物种增强适应性。

不定向性

例如控制黑毛A基因可能突变为控制白毛的a+或控制绿毛的a-基因。

有益性

一般基因突变是有害的,但是有极为少数的是有益突变。例如一只鸟的嘴巴很短,突然突变变种后,嘴巴会变长,这样会容易捕捉食物或水。

一般,基因突变后身体会发出抗体或其他修复体进行自行修复。可是有一些突变是不可回转性的。突变可能导致立即亡,也可以导致惨重后果,如器官无法正常运作,DNA严重受损,身体免疫力低下等。如果是有益突变,可能会发生奇迹,如身体分泌中特殊变种细胞来保护器官,身体,或在一些没有受骨骼保护的部位长出骨骼。基因与DNA就像是每个人的身份证,可他又是一个人的先知,因为它决定着身体的衰老、病变、亡的时间。

独立性

某一基因位点的一个等位基因发生突变,不影响另一个等位基因,即等位基因中的两个基因不会同时发生突变。

①隐性突变:当代不表现,F2代表现。

②显性突变:当代表现,与原性状并存,形成镶嵌现象或嵌合体。

重演性

同一生物不同个体之间可以多次发生同样的突变。

种类

基因突变可以是自发的也可以是诱发的。自发产生的基因突变型和诱发产生的基因突变型之间没有本质上的不同,基因突变诱变剂的作用也只是提高了基因的突变率。

按照表型效应,突变型可以区分为形态突变型、生化突变型以及致突变型等。这样的区分并不涉及突变的本质,而且也不严格。因为形态的突变和致的突变必然有它们的生物化学基础,所以严格地讲一切突变型都是生物化学突变型。

根据碱基变化的情况,基因突变一般可分为碱基置换突变(base substitution和移码突变(frameshift mutation)两大类。

碱基置换突变

指DNA分子中一个碱基对被另一个不同的碱基对取代所引起的突变,也称为点突变(point mutation)。点突变分转换和颠换两种形式。如果一种嘌呤被另一种嘌呤取代或一种嘧啶被另一种嘧啶取代则称为转换(transition)。嘌呤取代嘧啶或嘧啶取代嘌呤的突变则称为颠换(transversion)。由于DNA分子中有四种碱基,故可能出现4种转换和8种颠换(见上图)。在自然发生的突变中,转换多于颠换。

碱基对的转换可由碱基类似物的掺入造成。例如,5-溴尿嘧啶(5-bromouracil,BU)是一种与胸腺嘧啶类似的化合物,具有酮式和烯醇式两种结构,且两者可以互变,一般酮式较易变为烯醇式。当DNA复制

时,酮式BU代替了T,使A-T碱基对变为A-BU;第二次复制时,烯醇式BU能和G配对,故出现G-BU碱基对;第三次复制时,G和C配对,从而出现G-C碱基对,这样,原来的A-T碱基对就变成G-C碱基对(见左图)。

碱基对的转换也可由一些化学诱变剂诱变所致。例如,亚硝酸类能使胞嘧啶(C)氧化脱氨变成尿嘧啶(U),在下一

次复制中,U不与G配对,而与A配对;复制结果C-G变为T-A(见右图)。又如,烷化剂中的芥子气和硫酸二乙酯可使G发生乙基化,成为烷基化鸟嘌呤(mG),结果,mG不与C配对,而与T配对,经过复制,G-C变为A-T。

移码突变

指DNA片段中某一位点插入或丢失一个或几个(非3或3的倍数)碱基对时,造成插入或丢失位点以后的一系列编码顺序发生错位的一种突变。它可引起该位点以后的遗传信息都出现异常。发生了移码突变的基因在表达时可使组成多肽链的氨基酸序列发生改变,从而严重影响蛋白质或酶的结构与功能。吖啶类诱变剂如原黄素、吖黄素、吖啶橙等由于分子比较扁平,能插入到DNA分子的相邻碱基对之间。如在DNA复制前插入,会造成1个碱基对的插入;若在复制过程中插入,则会造成1个碱基对的缺失,两者的结果都引起移码突变。

缺失突变

基因也可以因为较长片段的DNA的缺失而发生突变。缺失的范围如果包括两个基因,那么就好象两个基因同时发生突变,因此又称为多位点突变。由缺失造成的突变不会发生回复突变。所以严格地讲,缺失应属于染色体畸变。

插入突变

一个基因的DNA中如果插入一段外来的DNA,那么它的结构便被破坏而导致突变。大肠杆菌的噬菌体Mu-1和一些插入顺序(IS)以及转座子(见转座因子)都是能够转移位置的遗传因子,当它们转移到某一基因中时,便使这一基因发生突变。许多转座子上带有抗药性基因,当它们转移到某一基因中时,一方面引起突变,另一方面使这一位置上出现一个抗药性基因。插入的DNA分子可以通过切离而失去,准确的切离可以使突变基因回复成为野生型基因。这一事件的出现频率并不由于诱变剂的处理而提高。

影响同义突变

无论是碱基置换突变还是移码突变,都能使多肽链中氨基酸组成或顺序发生改变,进而影响蛋白质或酶的生物功能,使机体的表型出现异常。碱基突变对多肽链中氨基酸序列的影响一般有下列几种类型。

⑴同义突变(same sense mutation):碱基置换后,虽然每个密码子变成了另一个密码子,但由于密码子的简并性,因而改变前、后密码子所编码的氨基酸不变,故实际上不会发生突变效应。例如,DNA分子模板链中GCG的第三位G被A取代,变为GCA,则mRNA中相应的密码子CGC就变为CGU,由于CGC和CGU都是编码精氨酸的密码子,故突变前后的基因产物(蛋白质)完全相同。同义突变约占碱基置换突变总数的25﹪。

错义突变

错义突变(missense mutation):碱基对的置换使mRNA的某一个密码子变成编码另一种氨基酸的密码子的突变称为错义突变。错义突变可导致机体内某种蛋白质或酶在结构及功能发生异常,从而引起疾病。如人类正常血红蛋白β链的第六位是谷氨酸,其密码子为GAA或GAG,如果第二个碱基A被U替代,就变成GUA或GUG,谷氨酸则被缬氨酸所替代,形成异常血红蛋白HbS,导致个体产生镰形细胞贫血,产生了突变效应。

无义突变

无义突变(nonsense mutation):某个编码氨基酸的密码突变为终止密码,多肽链合成提前终止,产生没有生物活性的多肽片段,称为无义突变。例如,DNA分子中的ATG中的G被T取代时,相应mRNA链上的密码子便从UAC变为UAA,因而使翻译就此停止,造成肽链缩短。这种突变在多数情况下会影响蛋白质或酶的功能。

终止密码

终止密码突变(terminator codon mutation):基因中一个终止密码突变为编码某个氨基酸的密码子的突变称为终止密码突变。由于肽链合成直到下一个终止密码出现才停止,因而合成了过长的多肽链,故也称为延长突变。例如,人血红蛋白α链突变型Hb Constant Spring比正常人α珠蛋白链多了31个氨基酸。

影响因素外因

物理因素:x射线、激光、紫外线、伽马射线等。

化学因素:亚硝酸、黄曲霉素、碱基类似物等。

生物因素:某些病毒和细菌等。

内因

DNA复制过程中,基因内部的脱氧核苷酸的数量、顺序、种类发生了局部改变从而改变了遗传信息

编辑本段应用

对于人类来讲,基因突变可以是有用的也可以是有害的。

诱变育种

通过诱发使生物产生大量而多样的基因突变,从而可以根据需要选育出优良品种,这是基因突变的有用的方面。在化学诱变剂发现以前,植物育种工作主要采用辐射作为诱变剂;化学诱变剂发现以后,诱变手段便大大地增加了。在微生物的诱变育种工作中,由于容易在短时间中处理大量的个体,所以一般只是要求诱变剂作用强,也就是说要求它能产生大量的突变。对于难以在短时间内处理大量个体的高等植物来讲,则要求诱变剂的作用较强,效率较高并较为专一。所谓效率较高便是产生更多的基因突变和较少的染色体畸变。所谓专一便是产生特定类型的突变型。以色列培育“彩色青椒”关键技术就是把青椒种子送上太空,使其在完全失重状态下发生基因突变来育种。

害虫防治

用诱变剂处理雄性害虫使之发生致的或条件致的突变,然后释放这些雄性害虫,便能使它们和野生的雄性昆虫相竞争而产生致

的或不育的子代。

诱变物质的检测

多数突变对于生物本身来讲是有害的,人类的癌症的发生也和基因突变有密切的关系,因此环境中的诱变物质的检测已成为公共卫生的一项重要任务。

检测方法

从基因突变的性质来看,检测方法分为显性突变法、隐性突变法和回复突变法三类。①显性致突变法,用待测物质处理雄性小鼠,使处理的雄鼠和未处理的雌鼠交配,观察母鼠子宫中的胎数,胎数愈多则说明诱发的显性致突变愈多。这一方法适用于慢性处理,其优点是可靠性较大,而且测试对象是哺乳动物。缺点是不能区别出药物对遗传物质的诱变作用和对于胚胎发育的其他毒理效应。②隐性突变法,一般采用某些隐性突变基因呈杂合状态的动植物作为测试对象,如果经某种药物处理后出现这一隐性性状,便说明这一药物诱发了这一隐性突变。小鼠中有多个隐性突变基因呈杂合状态的品系,可以用它来同时测定几个座位上诱发的基因突变。这一方法的优点是所测得的是哺乳动物中的基因突变,缺点是灵敏度较低,而且必须具备特殊的动植物品系,实验周期也较长。CIB法是用果蝇作为测试对象的一种检测方法。主要用来检测X染色体上发生的隐性致突变。果蝇的生活周期较短,所以这一方法的实验周期也较短。③回复突变法,一种根据回复突变诱发频率检测诱变物质的方法,由B.艾姆斯在1973年所首创,又称艾姆斯测验。测试对象是鼠伤寒沙门氏菌的几个组氨酸缺陷型菌株,包括碱基置换突变型和移码突变型。在检测系统中还包括大鼠的肝脏微粒体活化系统(S9),其中的酶能使一些前诱变剂转变为诱变剂。虽然在这里测试对象是细菌,而不是哺乳动物,但是由于这一检测系统简便易行,灵敏度较高,所以常用来作为诱变物质检测初步筛选的短期测试系统,用这种方法已经对几百种物质进行了测试,发现大约90%的致癌物质具有诱变作用。④中间宿主扩散盒法,为了能使回复突变法更接近于哺乳动物活体中的情况,有人把测试的细胞放在一种特制的小盒中,小盒的膜只允许溶液通过。把这种小盒埋藏在动物腹腔内,用待测物质处理动物,经过一定的时间后把小盒取出,测定小盒中被诱发回复突变的细胞数。

除了用来检测基因突变的许多方法以外,还有许多用来检测染色体畸变和姐妹染色单体互换的测试系统。当然对于药物的致癌活性的最可靠的测定是哺乳动物体内致癌情况的检测。但是利用微生物中诱发回复突变这一指标作为致癌物质的初步筛选,仍具有重要的实际意义(见毒理遗传学)。

诱发机制碱基置换突变

可以通过两个途径即碱基结构类似物的参入和诱变剂或射线引起的化学变化来进行。

① 类似物的参入 5-溴尿嘧啶(BU)是胸腺嘧啶的结构类似物。它只是在第5位碳原子上以溴原子代替了胸腺嘧啶的甲基(─GH3),并且因此更易以烯醇式出现(图2)。基因突变

大肠杆菌在含有BU的培养基中培养后,细菌的 DNA中的一部分胸腺嘧啶被BU所取代,并且最后在培养物中可以发现有少数突变型细菌出现,取代BU的量愈大则突变型愈多。突变型细菌在不含有BU的培养基中长久培养时,不改变它的突变型性状,可是把突变型细菌在含有BU的培养基中培养后,又可以发现少数由于发生回复突变而出现的野生型细菌。BU的诱变作用可以表示。首先在DNA复制过程中酮式的BU代替了胸腺嘧啶T而使A:T碱基对变为A:BU,在下一次DNA复制中烯醇式的BU*和鸟嘌呤G配对而出现G∶BU碱基对,最后在又一次复制中鸟嘌呤G和胞嘧啶C配对而终于出现G:C碱基对,完成了碱基的置换。这里BU所起的作用是促成这一置换,起促成作用的原因是由于嘧啶的 5位上溴原子代替了甲基后便较多地出现烯醇式的嘧啶。

同一理论还可以用来说明 BU是怎样诱发 的置换突变或者突变型的回复突变(图4)

2-氨基嘌呤等其他碱基结构类似物同样具有诱变作用。

②药物或射线引起的化学变化 亚硝酸能够作用于腺嘌呤(A)的氨基而使它变为次黄嘌呤(HX);可以作用于胞嘧啶(c)而使它变为尿嘧啶(U)。这两种氨基到酮基的变化带来碱基配对关系的改变,从而通过 DNA复制而造成A∶T→G∶C或者 G∶C→A∶T置换。

羟胺只和胞嘧啶发生专一性的反应,所以它几乎只诱发置换而不诱发置换。此外,pH值低或高温都可以促使DNA分子失去碱基特别是嘌呤,导致碱基置换。

紫外线的照射使 DNA分子上邻接的碱基形成二聚体,主要是胸腺嘧啶二聚体T-T。二聚体的形成使DNA双链呈现不正常的构型(见DNA损伤修复),从而带来致效应或者导致基因突变,其中包括多种类型的碱基置换。

移码突变

诱发移码突变的诱变剂种类较少,主要是吖啶类染料(图6)。这些染料分子能够嵌入DNA分子中,从而使DNA复制发生差错而造成移码突变。

定向诱变

利用重组DNA技术使DNA分子在指定位置上发生特定的变化,从而收到定向的诱变效果。例如将DNA分子用某一种限制性核酸内切酶处理,再用分解DNA单链的核酸酶S1处理,以去除两个粘性末端的单链部分,然后用噬菌体T4连接酶将两个平头末端连接起来,这样就可得到缺失了相应于这一限制性内切酶的识别位点的几个核苷酸的突变型。相反地,如果在四种脱氧核苷三磷酸(dNTP)存在的情况下加入 DNA多聚酶Ⅰ,那么进行互补合成的结果就得到多了相应几个核苷酸的两个平头末端。在T4接连酶的处理下,便可以在同一位置上得到几个核苷酸发生重复的突变型。

在指定的位置上也可以定向地诱发置换突变。诱变剂亚硫酸氢钠能够使胞嘧啶脱氨基而成为尿嘧啶,但是这种作用只限于 DNA单链上的胞嘧啶而对于双链上的胞嘧啶则无效。用识别位点中包含一个胞嘧啶的限制性内切酶处理DNA分子,使粘性末端中的胞嘧啶得以暴露(例如HindⅢ的识别位点是,经限制酶HindⅢ处理后得到粘性末端,中间的这一胞嘧啶便暴露了)。经亚硫酸氢钠处理后胞嘧啶(c)变为尿嘧啶(U)。通过DNA复制原来的碱基对C∶G便转变成为 T∶A。这样一个指定位置的碱基置换突变便被诱发。

还可以把人工合成的低聚核苷酸片段引入基因组中,以一定的方式改变某一基因等。

自发突变

所谓自发突变是指未经诱变剂处理而出现的突变。从诱变机制的研究结果来看,自发突变的原因不外乎以下几种。①背景辐射和环境诱变。短波辐射在宇宙中随时都有,实验说明辐射的诱变作用不存在阈效应,即任何微弱剂量的辐射都具有某种程度的诱变作用,因此自发突变中可能有一小部分是短波辐射所诱发的突变,有人估计果蝇的这部分突变约占自发突变的 0.1%。此外,接触环境中的诱变物质也是自发突变的一个原因。②生物自身所产生的诱变物质的作用。过氧化氢是一种诱变剂。在用过氧化氢作诱变处理时加入过氧化氢酶可以降低诱变作用,如果同时再加入氰化钾(KCN)则诱变作用又重新提高。这是因为KCN是过氧化氢酶的抑制剂。另外又发现在未经诱变处理的细胞群体中加入KCN时,可以提高自发突变率,说明细胞自身所产生的过氧化氢是一部分自发突变的原因。在一些高等植物和微生物中曾经发现一些具有诱变作用的物质,在长久储藏的洋葱和烟草等种子中也曾经得到具有诱变作用的抽提物。③碱基的异构互变效应。天然碱基结构类似物5-溴尿嘧啶所以能诱发碱基置换突变,是因为5位(图2)上的溴原子促使BU较多地以烯醇式结构出现。在正常的情况下酮式和烯醇式之间的异构互变也以极低的频率发生着,它必然同样地造成一部分并不起源于环境因素的自发突变。此外,推测氨基和亚氨基之间的异构互变同样是自发突变的一个原因。严格地讲,这才是真正的自发突变。核苷酸还可以有其他形式的异构互变,它们同样可能是自发突变的原因。

影响因素内在因素

突变是一系列变化的结果。影响这一系列变化的任何一个环节的因素都会对于突变型的出现有一定的影响。

诱变剂接触 DNA以前必须首先进入细胞,才能诱发突变。高等植物对于紫外线的诱变作用较不敏感的原因就是因为紫外线不易穿透它的细胞壁。化学药品的渗透和细胞膜的结构有很大的关系。鼠伤寒沙门氏菌有一个改变细胞膜成分的突变型深度粗糙 (rfa),它使细胞膜对于许多药物的渗透性增大,从而提高了细胞对许多化学诱变剂的敏感性。

细胞中的酶可以破坏进入细胞的诱变剂,从而减弱诱变效果。例如,过氧化氢酶可以减弱过氧化氢的诱变效果。一些没有诱变作用的物质也可以因为细胞中的酶的活化作用而使该物质转变成为诱变剂,这些物质称为前诱变剂。例如陆蒽酮本身没有诱变作用,但可以通过肝脏中的羟化酶的作用而转变为诱变剂海蒽酮(图7)。

基因突变

诱变剂接触DNA以后,能使DNA发生局部的损伤,这些损伤如果未经修复,便可阻碍 DNA的复制而造成细胞亡。修复 DNA损伤的机制有两类:一类称为无误修复,它使 DNA恢复原状但不带来突变;另一类称为易误修复或称错误倾向修复,它使DNA复制继续进行,但也常同时带来基因突变。

细胞中有关 DNA损伤修复的酶活性的改变,可以改变细胞对于诱变剂的杀伤作用或诱变作用的反应。由于基因突变而使不论哪一种有关 DNA损伤修复的酶失活时,都必然导致细胞对于紫外线或其他诱变剂的杀伤作用变得更为敏感。可是就诱变结果来讲,则要看这酶是涉及无误修复,还是易误修复。如果属于前者,那么有关的基因发生突变时将使突变更易发生,如果属于后者,那么有关的基因发生突变时将使突变更不易发生,因此这些突变型分别称为增变基因和抗变基因。在大肠杆菌噬菌体T4中,基因43编码 DNA多聚酶。基因43的突变型有两种。一种是增变基因,它的 DNA多聚酶的核酸外切酶活性和多聚酶活性之比小于野生型的 DNA多聚酶;另一种是抗变基因,它的 DNA多聚酶的这两种活性比大于野生型的 DNA多聚酶。在其他生物如大肠杆菌、酵母菌和一些真核生物中也曾发现增变基因。

外界因素

① 温度,基因突变包括一系列生物化学变化,所以温度对于基因突变有一定的影响。在大肠杆菌中,组氨酸缺陷型(his-)在15℃到37℃范围内温度每升高 10℃自发回复突变率提高1~1.5倍,在0℃时不发生自发突变。果蝇的致突变的温度系数也在这范围内。在微生物和果蝇中,较短时间的温度改变,特别是不适宜于生存的较高温度的处理,都可以诱发突变;在果蝇中还有-6℃低温处理诱发突变的报道。②培养基成分,SOS是一种经诱导后才出现的易误修复机制。和诱导酶的合成一样,蛋白质合成是使细菌细胞中出现SOS机制的必要因素,所以培养基中一切影响蛋白质合成的因素都会影响基因突变。③抗变剂和助变剂,能够促进另一诱变剂的作用的物质称为助变剂。例如,色氨酸烧焦后产生两种诱变剂和助变剂。

已经知道亚硝基胍(NTC)是一种高效诱变剂。在一定条件下,NTG的诱变效果能被氯化钴和活体红细胞中的含硫化合物减低,说明氯化钴和红细胞中存在着的某种物质具有抗变作用。这些能够降低自发或诱发突变率的物质称为抗变剂。此外,某些多肽如白肽素等也都被证明是抗变剂。

详见求翻译化学文献一段

发光剂是指在发光反应中参与能量转移并最终以发射光子的形式释放能量的化合物,根据上述发光特点可将发光剂分为荧光素、生物发光剂和化学发光剂三种。常用的化学发光剂有以三种,酶促反应的发光底物的发光剂,直接化学发光剂,电化学发光剂。

这个“化学发光”实验的AB溶液用的是什么?

探测剂2-4是用类似的合成路线(方案2)获得的。从10丙烯基-9(10H)吖啶酮(8)开始,端烯烃的铂催化硅氢化作用产生了三异丙酯硅氧烷改性的吖啶酮(9)。9与被取代的苯基格氏试剂的偶联,然后进行反离子交换就产生各种不同的9苯基吖啶盐衍生物(2-4)。

在9中的巨大的三异丙酯硅氧烷基团可以防止格氏试剂经受亲核取代作用而产生苯基硅氧烷副产物,22 以及被用于进一步衍生出固体的载体。

探测剂1-4的光分光特点可用紫外可见吸收和荧光发射来表征。探测剂1呈现出三个吸收带,分别出现在261nm(ε=64 900M-1cm-1)、360nm(ε=15 070M-1cm-1)和419nm(ε=4060M-1cm-1);蓝绿色的荧光在CH3CN中出现在495nm处。在CH2Cl2中探测剂2、3、4的最长波长,由于甲氧基苯基环(电子供体基团)与吖啶盐之间的电荷偏移过程而分别红偏到448、430和430nm(支持信息中的图S1)。23 探测剂2和3在536附近显示了**的荧光,而2比3显示了高出16倍的荧光光强,与此同时,4的荧光很难看出。

化学发光是某种物质分子吸收化学能而产生的光辐射。任何一个化学发光反应都包括两个关键步骤,即化学激发和发光。因此,一个化学反应要成为发光反应,必须满足两个条件:第一:反应必须提供足够的能量( 170 ~ 300KJ / mol ) ,第二,这些化学能必须能被某种物质分子吸收而产生电子激发态,并且有足够的荧光量子产率。到目前为止,所研究的化学发光反应大多为氧化还原反应,且多为液相化学发光反应。

化学发光反应的发光效率是指发光剂在反应中的发光分于数与参加反应的分子数之比。对于一般化学发光反应,值约为 10 - 6 ,较典型的发光剂,如鲁米诺,发光效率可达 0 . 01 ,发光效率大于 0 。 01 的发光反应极少见。现将几种发光效率较高的常用的发光剂及其发光机理归纳如下。

1. 鲁米诺及其衍生物

鲁米诺的衍生物主要有异鲁米诺、 4— 氨基已基 —N 一乙基异鲁诺及 AHEI 和 ABEI 等。鲁米诺在碱性条件下可被一些氧化剂氧化,发生化学发光反应,辐射出最大发射波长为 425nm 的化学发光。

在通常情况下鲁米诺与过氧化氢的化学发光反应相当缓慢,但当有某些催化剂存在时反应非常迅速。最常用催化剂是金属离子,在很大浓度范围内,金属离子浓度与发光强度成正比,从而可进行某些金属离子的化学发光分析,利用这一反应可以分析那些含有金属离子的有机化合物,达到很高的灵敏度。其次是利用有机化合物对鲁米诺化学发光反应的抑制作用,测定对化学发光反应具有猝灭作用的有机化合物。其三是通过偶合反应间接测定无机或有机化合物。其四是将鲁米诺的衍生物如异鲁米诺 (ABEI) 标记到羧酸和氨类化合物上,经过高效液相色谱 (HPLC) 或液相色谱 (LC) 分离后,再在碱性条件下与过氧化氢-铁氰化钾反应进行化学发光检测。也可以采用其它分离方法,如将新合成的化学发光试剂异硫氰酸异鲁米诺标记到酵母 RNA 后,通过离心和透析分离,然后进行化学发光检测。此外应用的还有 N 2(B2 羧基丙酰基 ) 异鲁米诺,并对其性能进行了研究。

2 .光泽精

光泽精以硝酸盐的形式存在,在碱性介质中,过氧化氢将其氧化成四元环过氧化物中间体,而后裂解生成激发态的吡啶酮而发光。利用光泽精与还原剂作用,可用于测定临床医学上一些重要的还原性物质,如抗坏血酸、肌酸酐、谷胱甘肽、葡萄糖醛酸、乳糖、葡萄糖。

3 .洛粉碱

洛粉是文献上记载最早的化学发光试剂,但却迟迟未得到应用,直到 1979 年 Marino 等人将它应用于 Co 的测定后才得到重视。此试剂已被用于多种元素的分析测定。

4 .过氧化草酸酯类

草酸盐类化学发光反应大都生成过氧草酰 (Peroxalate) 中间体,因此这类反应亦称过氧草酰类化学发光反应。过氧草酸盐类化学发光分析应用的推广还有赖于新的荧光衍生试剂的开发。

5 . 吖啶酯类

McCap r 等合成了一系列吖啶酯类化合物,对该类试剂的化学发光机理研究表明,发光效率与试剂中的可解离酸性基团的 pKa 有密切关系, pKa 一般应小于 11 。吖啶酯类化合物是一类很有前途的非放射性核酸探针标记物,用作 DNA 的发光探针,发光量子产率高,稳定性好,标记物对杂交反应的动力学和杂交体的稳定性无影响,可以直接在碱性介质中进行化学发光反应。

以上五种化学发光剂化学发光量子产率高,水溶液稳定,能被多种氧化剂直接氧化而发光,也可被众多的金属高于催化发光反应而发光,许多无机、有机和生化组分也能增强或抑制其发光,因此应用十分广泛。目前报道的有邻菲咯啉,碱基水杨酸、罗明丹 —B 、没食子酸、香豆素、皮素,茜素紫、苏木色精,培花青,三苯甲烷类染料,丙酮、乙醇、羟胺等。这些试剂商品化程度高,价廉,使用方便,但化学发光量子产率较低,因此,研究增敏试剂来提高它们的化学发光量子产率是非常关键的。