吖啶染料可以引起下列哪种突变-吖啶类诱变剂可以和哪种碱基配对
诱导化学物突变的类型有:化学诱变剂,物理诱变剂,自然突变和化学物质。
四种类型解析如下:
1、化学诱变剂
化学诱变剂是一种能够快速诱导基因突变的物质,它们的作用机制是改变细胞的DNA序列或DNA配对,从而导致突变。
2、物理诱变剂
物理诱变剂如辐射等可以损伤细胞的 DNA序列,从而起基因突变。
3、自然突变
自然发生的基因突变是生物进化的一个重要过程之一,它是一种细胞自身的、自发性的基因突变,通常是由 DNA突变或 DNA 复制错误造成的。
4、化学物质
一些化学物质如多环芳烃、氯化烃、硝基多环芳烃、甲醛等都能引发基因突变,而且其中一些物质被认为是致癌物质。
化学物突变:
一、名词解释:化学突变产生是指化学物质突变而生成,属于化学学科名词。
二、分类:按照诱发突变的特征进行分类,DNA碱基的类似物例如5-溴尿嘧啶(BU)代替胸腺嘧啶(T)而引入DNA,由于得到的是G,在后代中就会以很高的概率引起AT→GC(C为胞嘧啶)的转换突变(配对错误模型mispairing model)。
N-甲基-N-硝基-N-亚硝基胍(NG)也是很强的突变原,具有很强的癌原性,但它对试管中的DNA和很多的高等植物就不太有效。吖啶诱导体由于挤入到DNA碱基层状排列的重复间隙中,所以引起了码组移动。
烷化剂(表中的EMS,芥子气等)主要使鸟便嘌呤也使腺嘌呤、胸腺嘧啶、胞嘧啶烷化,其损伤本质也是产生突变。但是,产生这种突变的机制是很复杂的,并且对每个烷化剂又颇为不同。
何谓基因突变?有哪些主要类型?
诱导基因突变的常用方法:
一、碱基置换突变
可以通过两个途径即碱基结构类似物的参入和诱变剂或射线引起的化学变化来进行。
① 类似物的参入 5-溴尿嘧啶(BU)是胸腺嘧啶的结构类似物。它只是在第5位碳原子上以溴原子代替了胸腺嘧啶的甲基(─GH3),并且因此更易以烯醇式出现(图2)。基因突变
大肠杆菌在含有BU的培养基中培养后,细菌的 DNA中的一部分胸腺嘧啶被BU所取代,并且最后在培养物中可以发现有少数突变型细菌出现,取代BU的量愈大则突变型愈多。突变型细菌在不含有BU的培养基中长久培养时,不改变它的突变型性状,可是把突变型细菌在含有BU的培养基中培养后,又可以发现少数由于发生回复突变而出现的野生型细菌。BU的诱变作用可以表示。首先在DNA复制过程中酮式的BU代替了胸腺嘧啶T而使A:T碱基对变为A:BU,在下一次DNA复制中烯醇式的BU*和鸟嘌呤G配对而出现G∶BU碱基对,最后在又一次复制中鸟嘌呤G和胞嘧啶C配对而终于出现G:C碱基对,完成了碱基的置换。这里BU所起的作用是促成这一置换,起促成作用的原因是由于嘧啶的 5位上溴原子代替了甲基后便较多地出现烯醇式的嘧啶。
同一理论还可以用来说明 BU是怎样诱发 的置换突变或者突变型的回复突变(图4)
2-氨基嘌呤等其他碱基结构类似物同样具有诱变作用。
②药物或射线引起的化学变化 亚硝酸能够作用于腺嘌呤(A)的氨基而使它变为次黄嘌呤(HX);可以作用于胞嘧啶(c)而使它变为尿嘧啶(U)。这两种氨基到酮基的变化带来碱基配对关系的改变,从而通过 DNA复制而造成A∶T→G∶C或者 G∶C→A∶T置换。
羟胺只和胞嘧啶发生专一性的反应,所以它几乎只诱发置换G∶C→A∶T而不诱发A∶T→G∶C置换。此外,pH值低或高温都可以促使DNA分子失去碱基特别是嘌呤,导致碱基置换。
紫外线的照射使 DNA分子上邻接的碱基形成二聚体,主要是胸腺嘧啶二聚体T-T。二聚体的形成使DNA双链呈现不正常的构型(见DNA损伤修复),从而带来致效应或者导致基因突变,其中包括多种类型的碱基置换。
二、移码突变
诱发移码突变的诱变剂种类较少,主要是吖啶类染料(图6)。这些染料分子能够嵌入DNA分子中,从而使DNA复制发生差错而造成移码突变。
三、定向诱变
利用重组DNA技术使DNA分子在指定位置上发生特定的变化,从而收到定向的诱变效果。例如将DNA分子用某一种限制性核酸内切酶处理,再用分解DNA单链的核酸酶S1处理,以去除两个粘性末端的单链部分,然后用噬菌体T4连接酶将两个平头末端连接起来,这样就可得到缺失了相应于这一限制性内切酶的识别位点的几个核苷酸的突变型。相反地,如果在四种脱氧核苷三磷酸(dNTP)存在的情况下加入 DNA多聚酶Ⅰ,那么进行互补合成的结果就得到多了相应几个核苷酸的两个平头末端。在T4接连酶的处理下,便可以在同一位置上得到几个核苷酸发生重复的突变型。
在指定的位置上也可以定向地诱发置换突变。诱变剂亚硫酸氢钠能够使胞嘧啶脱氨基而成为尿嘧啶,但是这种作用只限于 DNA单链上的胞嘧啶而对于双链上的胞嘧啶则无效。用识别位点中包含一个胞嘧啶的限制性内切酶处理DNA分子,使粘性末端中的胞嘧啶得以暴露(例如HindⅢ的识别位点是,经限制酶HindⅢ处理后得到粘性末端,中间的这一胞嘧啶便暴露了)。经亚硫酸氢钠处理后胞嘧啶(c)变为尿嘧啶(U)。通过DNA复制原来的碱基对C∶G便转变成为 T∶A。这样一个指定位置的碱基置换突变便被诱发。
还可以把人工合成的低聚核苷酸片段引入基因组中,以一定的方式改变某一基因等。
基因对人体作用
基因突变是指DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变,叫基因突变(gene mutation)。它包括单个碱基改变所引起的点突变(point mutation),或多个碱基的缺失、重覆和插入。
在自然条件下发生的突变叫自发突变,由人工利用物理因素或化学药剂诱发的突变叫诱发突变。基因突变是生物变异的主要原因,是生物进化的主要因素。在生产上人工诱变是产生生物新品种的重要方法。
碱基置换突变:由一个错误的碱基对替代一个正确的碱基对的突变叫碱基置换突变。例如在DNA分子中的GC碱基对由CG或AT或TA所代替,AT碱基对由TA或GC或CG所代替。碱基替换过程只改变被替换碱基的那个密码子,也就是说每一次碱基替换只改变一个密码子,不会涉及到其他的密码子。引起碱基置换突变的原因和途径有两个。一是碱基类似物的掺入,例如在大肠杆菌培养基中加入5-溴尿嘧院(BU)后,会使DNA的一部分胸腺嘧啶被BU所取代,从而导致AT碱基对变成GC碱基对,或者GC碱基对变成AT碱基对。二是某些化学物质如亚硝酸、亚硝基胍、硫酸二乙酯和氮芥等,以及紫外线照射,也能引起碱基置换突变。
移码突变:基因中插入或者缺失一个或几个碱基对,会使DNA的阅读框架(读码框)发生改变,导致插入或缺失部位之后的所有密码子都跟着发生变化,结果产生一种异常的多肽链。移码突变诱发的原因是一些像吖啶类染料分子能插入DNA分子,使DNA复制时发生差错,导致移码突变。
根据遗传信息的改变方式,基因突变又可以分为同义突变、错义突变和无义突变三种类型。
基因突变的特点:
基因突变作为生物变异的一个重要来源,它具有以下主要特点:
第一,基因突变在生物界中是普遍存在的。无论是低等生物,还是高等的动植物以及人,都可能发生基因突变。基因突变在自然界的物种中广泛存在。例如,棉花的短果枝、水稻的矮杆、糯性,果蝇的白眼、残翅,家鸽羽毛的灰红色,以及人的色肓、糖尿病、白化病等遗传病,都是突变性状。自然条件下发生的基因突变叫做自然突变,人为条件下诱发产生的基因突变叫做诱发突变。
第二,基因突变是随机发生的。它可以发生在生物个体发育的任何时期和生物体的任何细胞。一般来说,在生物个体发育的过程中,基因突变发生的时期越迟,生物体表现突变的部分就越少。例如,植物的叶芽如果在发育的早期发生基因突变,那么由这个叶芽长成的枝条,上面着生的叶、花和果实都有可能与其他枝条不同。如果基因突变发生在花芽分化时,那么,将来可能只在一朵花或一个花序上表现出变异。
基因突变可以发生在体细胞中,也可以发生在生殖细胞中。发生在生殖细胞中的突变,可以通过受精作用直接传递给后代。发生在体细胞中的突变,一般是不能传递给后代的。
第三,在自然状态下,对一种生物来说,基因突变的频率是很低的。据估计,在高等生物中,大约十万个到一亿个生殖细胞中,才会有一个生殖细胞发生基因突变,突变率是105~108。不同生物的基因突变率是不同的。例如,细菌和噬菌体等微生物的突变率比高等动值物的要低。同一种生物的不同基因,突变率也不相同。例如,玉米的抑制色素形成的基因的突变率为1.06×10-4,而**胚乳基因的突变率为2.2×10-6.
第四,大多数基因突变对生物体是有害的,由于任何一种生物都是长期进化过程的产物,它们与环境条件已经取得了高度的协调。如果发生基因突变,就有可能破坏这种协调关系。因此,基因突变对于生物的生存往往是有害的。例如,绝大多数的人类遗传病,就是由基因突变造成的,这些病对人类健康构成了严重威胁。又如,植物中常见的白化苗,也是基因突变形成的。这种苗由于缺乏叶绿素,不能进行光合作用制造有机物,最终导致亡。但是,也有少数基因突变是有利的。例如,植物的抗病性突变、耐旱性突变、微生物的抗药性突变等,都是有利于生物生存的。
第五,基因突变是不定向的。一个基因可以向不同的方向发生突变,产生一个以上的等位基因。例如,控制小鼠毛色的灰色基因(A+)可以突变成**基因(AY)。也可以突变成黑色基因(a).但是每一个基因的突变,都不是没有任何限制的。例如,小鼠毛色基因的突变,只限定在色素的范围内,不会超出这个范围。
例如英国女王维多利亚家族在她以前没有发现过血友病的病人,但是她的一个儿子患了血友病,成了她家族中第一个患血友病的成员。后来,又在她的外孙中出现了几个血友病病人。很显然,在她的父亲或母亲中产生了一个血友病基因的突变。这个突变基因传给了她,而她是杂合子,所以表现型仍是正常的,但却通过她传给了她的儿子。基因突变的后果除如上所述形成致病基因引起遗传病外,还可造成胎、自然流产和出生后天折等,称为致性突变;当然也可能对人体并无影响,仅仅造成正常人体间的遗传学差异;甚至可能给个体的生存带来一定的好处。
菌种选育的自然选育
基因与健康 基因检测现代医学研究证明,除外伤外,几乎所有的疾病都和基因有关系。像血液分不同血型一样,人体中正常基因也分为不同的基因型,即基因多态型。不同的基因型对环境因素的敏感性不同,敏感基因型在环境因素的作用下可引起疾病。另外,异常基因可以直接引起疾病,这种情况下发生的疾病为遗传病。 可以说,引发疾病的根本原因有三种: (1)基因的后天突变; (2)正常基因与环境之间的相互作用; (3)遗传的基因缺陷。 绝大部分疾病,都可以在基因中发现病因。 基因通过其对蛋白质合成的指导,决定我们吸收食物,从身体中排除毒物和应对感染的效率。 第一类与遗传有关的疾病有四千多种,通过基因由父亲或母亲遗传获得。 第二类疾病是常见病,例如心脏病、糖尿病、多种癌症等,是多种基因和多种环境因素相互作用的结果。 基因是人类遗传信息的化学载体,决定我们与前辈的相似和不相似之处。在基因“工作”正常的时候,我们的身体能够发育正常,功能正常。如果一个基因不正常,甚至基因中一个非常小的片断不正常,则可以引起发育异常、疾病,甚至亡。 健康的身体依赖身体不断的更新,保证蛋白质数量和质量的正常,这些蛋白质互相配合保证身体各种功能的正常执行。每一种蛋白质都是一种相应的基因的产物。 基因可以发生变化,有些变化不引起蛋白质数量或质量的改变,有些则引起。基因的这种改变叫做基因突变。蛋白质在数量或质量上发生变化,会引起身体功能的不正常以致造成疾病。基因检测概念 基因检测是通过血液、其他体液或细胞对DNA进行检测的技术。 基因检测可以诊断疾病,也可以用于疾病风险的预测。疾病诊断是用基因检测技术检测引起遗传性疾病的突变基因。目前应用最广泛的基因检测是新生儿遗传性疾病的检测、遗传疾病的诊断和某些常见病的辅助诊断。目前有1000多种遗传性疾病可以通过基因检测技术做出诊断。 近年来令人非常兴奋的是预测性基因检测的开展。利用基因检测技术在疾病发生前就发现疾病发生的风险,提早预防或采取有效的干预措施。目前已经有20多种疾病可以用基因检测的方法进行预测。 检测的时候,先把受检者的基因从血液或其他细胞中提取出来。然后用可以识别可能存在突变的基因的引物和PCR技术将这部分基因复制很多倍,用有特殊标记物的突变基因探针方法、酶切方法、基因序列检测方法等判断这部分基因是否存在突变或存在敏感基因型。 目前基因检测的方法主要有:荧光定量PCR、基因芯片、液态生物芯片与微流控技术等。传统检测的区别 我们通常的医疗检测手段是针对疾病的具体症状或已有病变进行检测。现代科学的发展促进了医疗检验手段的不断发展,可以深入细微之处对疾病进行纵向或横向的剖析。 大家都知道,人体的基本组成部分是细胞,如果可以对细胞展开一种实质的剖析,就可以找到疾病产生的根源。如癌症是人体细胞发生突变并大量复制的结果。一般医疗检测手段是要看你身体是否已经有癌细胞存在,而对于没有产生癌变的细胞但已经具有的风险却无从得知。基因检测则不然,通过基因检测完全可以准确地告诉你,未来某个生命时段是否存在发生某种疾病的可能性或机率,给你一个预警通知,以便及早采取有效的防病措施。 基因 基因检测 基因测序 体检 gene gene-test 基因检测与常规体检的区别? 疾病易感基因检测与常规体检都能起到预防的作用,但二者反映的是不同的阶段。一种疾病从开始到发病要经历很长的时间。基因检测是人在没发病时,预防将来会发生什么疾病,属于检测的第一阶段;而常规检测是发生疾病后,疾病到达什么程度。如:早期、中期等等,这属于检测的第二个阶段,是临床医学的范畴。所以说,基因检测是主动预防疾病的发生,而传统的体检手段则无法起到这样的预防作用。 传统体检主要针对人体已经出现的临床病变进行诊断和检查,它的主要任务是配合疾病的治疗,无法在病变之前预知,下更多、更深的结论。也就是说,在疾病的预防上,传统体检十分的被动和滞后。现实中很多疾病并无明显征兆,而一旦发病,现代医学往往束手无策,患者及其家人就可能一生痛苦和麻烦。 编辑本段准确率 疾病家庭的遗传史就是疾病易感基因的遗传所造成的,所以基因检测能够检测出这些遗传的易感基因型,检测准确率达到99.9999%。检测病种类型 (1) D类34种:Graves病、桥本甲状炎、急性淋巴细胞白血病、慢性粒细胞白血病、系统性红斑狼疮、慢性乙肝、慢性重型乙肝、自身免疫性肝炎、乙肝后肝硬化、原发性胆汁性肝硬化、 I型糖尿病、 Vogt-小柳原田综合症 、类风湿性关节炎、尿毒症、 Iga系肾病、非Iga系膜增值性肾炎、抗肾小球基底膜性肾炎、激素敏感型肾病、肾癌、发作性睡病、哮喘、骨关节结核、克罗恩病、再生障碍性贫血、Hiv感染和艾滋病、过敏性鼻炎、牙周炎、膀胱癌、食管癌、结肠癌、直肠癌、白塞氏病、慢性荨麻疹、视神经炎 . (2) E类9种:心脑血管疾病易感基因检测(包括原发性高血压、高血脂、冠心病、动脉粥样硬化、出血性脑卒中、缺血性脑卒中、房颤、老年痴呆、高血压合并左室肥厚 ) (3) F类5种:糖尿病及其并发症易感性检测(包括Ⅱ型糖尿病、糖尿病并发肾病、糖尿病眼病、糖尿病心血管并发症、Ⅱ型糖尿病神经病变 ) (4) Gc类13种:男性肿瘤易感基因检测(包括肺癌、肝癌、胃癌、急性淋巴细胞白血病、慢性淋巴细胞白血病、结肠癌、直肠癌、喉癌、食管癌、胃溃疡、鼻咽癌、膀胱癌、前列腺癌等) (5) Hc类15种:女性肿瘤易感基因检测(包括乳腺癌、卵巢癌、宫颈癌、食管癌、鼻咽癌、肺癌、原发性肝癌、胃癌、胃溃疡、结肠癌、直肠癌、喉癌、膀胱癌、急性淋巴细胞白血病、慢性淋巴细胞白血病等) (6) X类5种:胰腺癌、Ⅱ型糖尿病足、过敏性紫癜性肾炎、老年性白内障、慢性支气管炎。 (7) Y类5种:内源性高甘油三酯血症、高胆固醇血症、IIb型高脂蛋白血症、高脂血症人群的膳食干预敏感性 (8) 美丽一号M1——健康美容基因检测 (9) 美丽二号M2——肥胖易感基因检测基因亲子鉴定 通过遗传标记的检验与分析来判断父母与子女是否亲生关系,称之为亲子试验或亲子鉴定。DNA是人体遗传的基本载体,人类的染色体是由DNA构成的,每个人体细胞有23对(46条)成对的染色体,其分别来自父亲和母亲。夫妻之间各自提供的23条染色体,在受精后相互配对,构成了23对(46条)孩子的染色体。如此循环往复构成生命的延续。 由于人体约有30亿个核苷酸构成整个染色体系统,而且在生殖细胞形成前的互换和组合是随机的,所以世界上没有任何两个人具有完全相同的30亿个核苷酸的组成序列,这就是人的遗传多态性。尽管遗传多态性的存在,但每一个人的染色体必然也只能来自其父母,这就是DNA亲子鉴定的理论基础。 传统的血清方法能检测红细胞血型、白细胞血型、血清型和红细胞酶型等,这些遗传学标志为蛋白质(包括糖蛋白)或多肽,容易失活而导致检材得不到理想的检验结果。此外,这些遗传标志均为基因编码的产物,多态信息含量(PIC)有限,不能反映DNA编码区的多态性,且这些遗传标志存在生理性、病理性变异(如A型、O型血的人受大肠杆菌感染后,B抗原可能呈阳性。因此,其应用价值有限。 DNA检验可弥补血清学方法的不足,故受到了法医物证学工作者的高度关注,近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、案、碎尸案、致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。 亲子鉴定的准确性 DNA亲子鉴定是目前最准确的亲权鉴定方法,如果小孩的遗传位点和被测试男子的位点(至少1个)不一致,那么该男子便100%被排除血缘关系之外,即他绝对不可能是孩子的父亲。如果孩子与其父母亲的位点都吻合,我们就能得出亲权关系大于99.99%的可能性,即证明他们之间的血缘亲子关系。了解自身是否有家族性疾病的致病基因 具有癌症或多基因遗传病(如老年痴呆、高血压等)家族史的人是最需要做基因体检的对象,通过基因体检这些高危险群可以知道自己是不是带有疾病基因,以便及早发现和及早预防,并做好饮食保健与生活习惯的调整,来避免疾病发生的可能。 正确选择药物,避免药物浪费和药物不良反应 由于个体遗传基因上的差异,不同的人对外来物质(如药物)会产生的反映也会有所不同,因此部分病人使用正常剂量的药物时,可能会出现药物过敏、红肿发疹的现象,或者是在服用相同药物时,有人觉得神效,有人却不但无效还有副作用。基因体检通过对药物反应相关基因的测定,帮助了解基因体质,协助预测可能的药物反应。 提供健康风险管理最好的依据 目前的很多不良环境因子,如空气、水质及农药的污染加上不良生活习惯像抽烟、饮酒等,都会容易使体内的基因受到破坏而产生疾病。长期暴露在这些高度污染环境或有不良生活习惯的人以及目前身体健康的民众都可以通过基因体检了解个人在不同疾病上的发生倾向,进行全面的生活调整或干预,以期降低风险延缓疾病发生,达到基康所倡导的“个性医疗,解码健康”的目的。 焦作爱得健康管理有限公司宣 基因检测预防疾病
参与细胞修复DNA损伤的酶是什么
自然选育的菌种来源于自然界、菌种保藏机构或生产过程,从自然界中选育菌种的过程较为复杂,而从生产过程或菌种保藏机构得到菌种的自然选育过程较为简单。
自然选育的步骤主要是:采样,增长培养,培养分离和筛选等。采样 筛选的菌种采集的对象以土壤为主,也可以是植物、腐败物品和某些水域等。土壤是微生物的汇集地,从土壤中几乎可以分离到任何所需的微生物,故土壤往往是首选的采集目标。微生物的营养需求和代谢类型与生长环境有很大关系。富集培养 由于采集样品中各种微生物数量有很大差异,若估计到要分离的菌种数量不多时,就要人为增加分离的概率,增加该菌种的数量,称为富集培养。纯种培养 尽管通过增长培养的效果很好,但是得到的微生物还是处于混杂状态,因为样品中本身含有许多种类的微生物。所以,为了取得所需的微生物纯种,增殖培养后必须进行分离。平板分离法由接种环以无菌操作沾取少许待分离的材料,在无菌平板表面进行平行划线、扇形划线或其他形式的连续划线,微生物细胞数量将随着划线次数的增加而减少,并逐步分散开来。如果划线适宜的话,微生物能一一分散,经培养后,可在平板表面得到单菌落。分离方法有三种:即划线分离法、稀释法和组织分离法。稀释分离法 在溶液中再加入溶剂使溶液的浓度变小。亦指加溶剂于溶液中以减小溶液浓度的过程。浓溶液的质量×浓溶液的质量分数=稀溶液的质量×稀溶液的质量分数生产能力考察 初筛一般通过平板稀释法获得单个菌落,然后对各个菌落进行有关性状的初步测定,从中选出具有优良性状的菌落。例如,对抗生素产生菌来说,选出抑菌圈大的菌落;对于蛋白酶产生菌来说,选出透明圈大的菌落。此法快速、简便,结果直观性强。缺点是培养皿的培养条件与三角瓶、发酵罐的培养条件相差大,两者结果常不一致。
复筛指对初筛出的菌株的有关性状作精确的定量测定。一般要在摇瓶或台式发酵罐中进行培养,经过精细的分析测定,得出准确的数据。突变体经过筛选后,还必须经过小型或中型的投产试验,才能用于生产。诱变育种诱变育种一般步骤 利用各种诱变剂处理微生物细胞,提高基因的随机突变频率,扩大变异幅度,通过一定的筛选方法,获得所需要优良菌株的过程,称为诱变育种。诱变育种应注意的问题 (1)挑选优良的出发菌株 出发菌株就是用于育种的原始菌株。出发菌株适合,育种工作效率就高。参考以下实际经验选用出发菌株:①以单倍体纯种为出发菌株,可排除异核体和异质体的影响;②采用具有优良性状的菌株,如生长速度快、营养要求低以及产孢子早而多的菌株;③选择对诱变剂敏感的菌株。由于有些菌株在发生某一变异后,会提高对其它诱变因素的敏感性,故可考虑选择已发生其他变异的菌株为出发菌株。④许多高产突变往往要经过逐步累积的过程,才变得明显,所以有必要多挑选一些已经过诱变的菌株为出发菌株,进行多步育种,确保高产菌株的获得。
(2)菌悬液的制备 一般采用生理状态一致(用选择法或诱导法使微生物同步生长)的单细胞或孢子进行诱变处理。所处理的细胞必须是均匀而分散的单细胞悬液。分散状态的细胞可以均匀地接触诱变剂,又可避免长出不纯菌落。由于某些微生物细胞是多核的,即使处理其单细胞,也会出现不纯的菌落。有时,虽然处理的是单核的细胞或孢子,但由于诱变剂一般只作用于DNA双链中的某一条单链,故某一突变无法反映在当代的表型上,而是要经过DNA的复制和细胞分裂后才表现出来,于是出现了不纯菌落,这就叫表型延迟。上述两类不纯菌落的存在,也是诱变育种工作中初分离的菌株经传代后很快出现生产性状“衰退”的主要原因。鉴于上述原因,因此用于诱变育种的细胞应尽量选用单核细胞,如霉菌或放线菌的孢子或细菌的芽孢。
细胞的生理状态对诱变处理也会产生很大的影响。细菌在对数期诱变处理效果较好;霉菌或放线菌的分生孢子一般都处于休眠状态,所以培养时间的长短对孢子影响不大,但稍加萌发后的孢子则可提高诱变效率。
(3)选择简便有效、最适剂量的诱变剂 诱变剂主要有两大类,即物理诱变剂和化学诱变剂。物理诱变剂如紫外线、X射线、γ射线和快中子等;化学诱变剂种类极多,主要有烷化剂、碱基类似物和吖啶类化合物。最常用的烷化剂有N-甲基-N′-硝基-N-亚硝基胍(NTG)、甲基磺酸乙酯(EMS) 、甲基亚硝基脲(NMU)、硫酸二乙酯(DES)和环氧乙烷等。目前常用的诱变剂主要有紫外线(UV)、硫酸二乙酯、N-甲基-N′-硝基-N-亚硝基胍(NTG)和亚硝基甲基脲(NMU)等。后两种因有突出的诱变效果,所以被誉为“超诱变剂”。剂量的选择受处理条件、菌种情况、诱变剂的种类等多种因素的影响。剂量一般指强度与作用时间的乘积。在育种实践中,常采用杀菌率来作各种诱变剂的相对剂量。要确定一个合适的剂量,通常要进行多次试验。在实际工作中,突变率往往随剂量的增高而提高,但达到一定程度后,再提高剂量反而会使突变率下降。根据对紫外线、X射线和乙烯亚胺等诱变效应的研究结果,发现正变较多地出现在偏低的剂量中,而负变则较多地出现于偏高的剂量中,还发现经多次诱变而提高产量的菌株中,更容易出现负变。因此,在诱变育种工作中,目前比较倾向于采用较低的剂量。例如,过去在用紫外线作诱变剂时,常采用杀菌率为99%的剂量,而近年来则倾向于采用杀菌率为30%~75%的剂量。
(4)突变体的筛选 诱变处理使微生物群体中出现各种突变型,其中绝大多数是负变株。要获得预定的效应表型主要靠科学的筛选方案和筛选方法,一般要经过初筛和复筛两个阶段的筛选。杂交育种杂交育种法杂交育种(bybridization)指不同种群、不同基因型个体间进行杂交,并在其后代中通过选择而育成纯合品种的方法。杂交可以使双亲的基因重新组合,形成各种不同的类型,为选择提供丰富的材料;基因重组可以将双亲控制不同性状的优良基因结合于一体,或将双亲中控制同一性状的不同微效基因积累起来,产生在各该性状上超过亲本的类型。正确选择亲杂交育种技术选择 1.选择亲本的原则首先要尽可能选用综合性状好,优点多,缺点少,优缺点或优良性状能互补的亲本,同时也要注意选用生态类型差异较大、亲缘关系较远的亲本杂交,如江西的荷包红鲤和云南的元江鲤。在亲本中最好有一个能适应当地条件的品种。要考虑主要的育种目标,选作育种目标的性状至少在亲本之一应十分突出。当确定一个品种为主要改良对象,针对它的缺点进行改造才能收到好的效果,如草鱼的抗病性。采用的组合方式 2.杂交方式亲本确定之后,采用什么杂交组合方式,也关系育种的成败。通常采用的有单杂交、复合杂交、回交等杂交方式。 (1)单杂交即两个品种间的杂交(单交)用甲×乙表示,其后代称为单交种,由于简单易行、经济,所以生产上应用最广,一般主要是利用第一代,如丰鲤、福寿鱼。 (2)复合杂交即用两个以上的品种、经两次以上杂交的育种方法。如果单交不能实现育种所期待的性状要求时,往往采用复合杂交,其目的在于创造一些具有丰富遗传基础的原始群体,才可能从中选出更优秀的个体。复合杂交可分为三交、双交等。三交是一个单交种与另一品种的再杂交,可表示为(甲×乙)×丙,例如(荷包红鲤×元江鲤)×散鳞镜鲤一三杂交鲤。双交是两个不同的单交种的杂交,可表示为(甲×乙)×(丙×丁)或(甲×丙)×(乙×丙),例如(蓝非鲫×尼罗非鲫)×(莫桑比克非鲫×尼罗非鲫)。 (3)回交即杂交后代继续与其亲本之一再杂交,以加强世代某一亲本性状的育种方法。当育种目的是企图把某一群体乙的一个或几个经济性状引入另一群体甲中去,则可采用回交育种。如鲮鱼具有许多优良性状,但不能耐受低温,需要进行遗传改良。可先用耐受低温的湘华鲮与鲮杂交,杂交子一代再与鲮回交,回交后代继续同鲮进行多次回交,对回交子代选择的注意力必须集中在抗寒性这个目标性状上,从而最终育成一个具有抗寒性的优良的。基因工程育种 随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。 所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。
DNA损伤和修复各有哪些类型,试述参与原核生物DNA错配修复的蛋白质和酶以及它们所参与的主要步骤和反应
DNA聚合酶(DNA dependent DNA polymerase, DDDP): ⑴种类和生理功能:在原核生物中,目前发现的DNA聚合酶有三种,分别命名为DNA聚合酶Ⅰ(pol Ⅰ),DNA聚合酶Ⅱ(pol Ⅱ),DNA聚合酶Ⅲ(pol Ⅲ),这三种酶都属于具有多种酶活性的多功能酶。pol Ⅰ为单一肽链的大分子蛋白质,具有5'→3'聚合酶活性、3'→5'外切酶活性和5'→3'外切酶的活性;其功能主要是去除引物、填补缺口以及修复损伤。pol Ⅱ具有5'→3'聚合酶活性和3'→5'外切酶活性,其功能 不明。pol Ⅲ是由十种亚基组成的不对称二聚体,具有5'→3'聚合酶活性和3'→5'外切酶活性,与DNA复制功能有关。 在真核生物中,目前发现的DNA聚合酶有五种。其中,参与染色体DNA复制的是pol α(延长随从链)和pol δ(延长领头链),参与线粒体DNA复制的是pol γ,polε与DNA损伤修复、校读和填补缺口有关,pol β只在其他聚合酶无活性时才发挥作用。 ⑵DNA复制的保真性:为了保证遗传的稳定,DNA的复制必须具有高保真性。DNA复制时的保真性主要与下列因素有关:①遵守严格的碱基配对规律;②在复制时对碱基的正确选择;③对复制过程中出现的错误及时进行校正。 DNA损伤修复-简史 1949年A.凯尔纳偶然发现灰色链丝菌等微生物经紫外线(UV)照射后如果立即暴露在可见光下则可减少亡。此后在大量的微生物实验中都发现了这种现象,并证明这是许多种微生物固有的DNA损伤修复功能,并把这一修复功能称为光复活。1958年R.L.希尔证明即使不经可见光的照射,大肠杆菌也能修复它的由紫外线所造成的DNA损伤,而后又证明其他微生物也有这种功能,当时就把这种修复功能称为暗复活或暗修复。此后发现暗修复普遍地存在于原核生物、低等真核生物、高等真核生物的两栖类乃至哺乳动物中,并证实暗修复包括切除修复和复制后修复两种。1968年美国学者J.E.克利弗首先发现人类中的常染色体隐性遗传的光化癌变疾病——着色性干皮病(XP)是由基因突变造成的 DNA损伤切除修复功能的缺陷引起的。这一发现为恶性肿瘤的发生机理提供了一个重要的分子生物学证据,也使DNA损伤修复的研究进入了医学领域。 DNA损伤修复-损伤类型 DNA分子的损伤类型有多种。UV照射后DNA分子上的两个相邻的胸腺嘧啶 (T)或胞嘧啶(C)之间可以共价键连结形成环丁酰环,这种环式结构称为二聚体。胸腺嘧啶二聚体的形成是 UV对DNA分子的主要损伤方式。 Χ射线、γ射线照射细胞后,由细胞内的水所产生的自由基既可使DNA分子双链间氢键断裂,也可使它的单链或双链断裂。化学物中的博莱霉素、甲基磺酸甲烷等烷化剂也能造成链的断裂。 丝裂霉素C可造成DNA分子单链间的交联,这种情况常发生在两个单链的对角的鸟嘌呤之间。链的交联也往往带来DNA分子的断裂。 DNA分子还可以发生个别碱基或核苷酸的变化。例如碱基结构类似物5-溴尿嘧啶等可以取代个别碱基,亚硝酸能引起碱基的氧化脱氨反应,原黄素(普鲁黄)等吖啶类染料和甲基氨基偶氮苯等芳香胺致癌物可以造成个别核苷酸对的增加或减少而引起移码突变(见基因突变)。 一种 DNA损伤剂往往可以同时引起几种类型的损伤,其损伤效应的大小和类型与剂量及细胞所处的周期状态有关。 DNA损伤修复-修复方式 光复活又称光逆转。这是在可见光(波长3000~6000埃)照射下由光复活酶识别并作用于二聚体,利用光所提供的能量使环丁酰环打开而完成的修复过程。光复活酶已在细菌、酵母菌、原生动物、藻类、蛙、鸟类、哺乳动物中的有袋类和高等哺乳类及人类的淋巴细胞和皮肤成纤维细胞中发现。这种修复功能虽然普遍存在,但主要是低等生物的一种修复方式,随着生物的进化,它所起的作用也随之削弱。 切除修复 又称切补修复。最初在大肠杆菌中发现,包括一系列复杂的酶促DNA修补复制过程,主要有以下几个阶段:核酸内切酶识别DNA损伤部位,并在5’端作一切口,再在外切酶的作用下从5’端到3’端方向切除损伤;然后在 DNA多聚酶的作用下以损伤处相对应的互补链为模板合成新的 DNA单链片断以填补切除后留下的空隙;最后再在连接酶的作用下将新合成的单链片断与原有的单链以磷酸二酯链相接而完成修复过程。 切除修复并不限于修复嘧啶二聚体,也可以修复化学物等引起的其他类型的损伤。从切除的对象来看,切除修复又可以分为碱基切除修复和核苷酸切除修复两类。碱基切除修复是先由糖基酶识别和去除损伤的碱基,在DNA单链上形成无嘌呤或无嘧啶的空位,这种空缺的碱基位置可以通过两个途径来填补:一是在插入酶的作用下以正确的碱基插入到空缺的位置上;二是在核酸内切酶的催化下在空位的5’端切开DNA链,从而触发上述一系列切除修复过程。对于各种不同类型的碱基损伤都有特异的糖基酶加以识别。不同的核酸内切酶对于不同类型损伤的识别也具有相对的特异性。 切除修复功能广泛存在于原核生物和真核生物中,也是人类的主要修复方式,啮齿动物 (如仓鼠、小鼠)先天缺乏切除修复的功能。 1978年美国学者 J.L.马克斯发现真核生物与原核生物间由于染色质结构不同, 切除修复的过程也不相同。真核生物的DNA分子不象原核生物那样是裸露的,而是缠绕在组蛋白上形成串珠状的核小体结构。真核生物中的嘧啶二聚体的切除分两个阶段:快速切除期,约需2~3小时,主要切除未与组蛋白结合的DNA部分的损伤;缓慢切除期,至少要持续35小时而且需要有某种控制因子去识别这种损伤,使DNA受损部分从核小体中暴露出来,然后经过一系列步骤完成切除修复,然后修复的DNA分子再缠绕在组蛋白上重新形成核小体。 重组修复 重组修复从 DNA分子的半保留复制开始,在嘧啶二聚体相对应的位置上因复制不能正常进行而出现空缺,在大肠杆菌中已经证实这一DNA损伤诱导产生了重组蛋白,在重组蛋白的作用下母链和子链发生重组,重组后原来母链中的缺口可以通过DNA多聚酶的作用,以对侧子链为模板合成单链DNA片断来填补,最后也同样地在连接酶的作用下以磷酸二脂键连接新旧链而完成修复过程。重组修复也是啮齿动物主要的修复方式。重组修复与切除修复的最大区别在于前者不须立即从亲代的DNA分子中去除受损伤的部分,却能保证DNA复制继续进行。原母链中遗留的损伤部分,可以在下一个细胞周期中再以切除修复方式去完成修复。 重组修复的主要步骤有: 1.复制 含有TT或其他结构损伤的DNA仍然可以正常的进行复制,但当复制到损伤部位时,子代DNA链中与损伤部位相对应的位置出现切口,新合成的子链比未损伤的DNA链要短。 2.重组 完整的母链与有缺口的子链重组,缺口由母链来的核苷酸片段弥补。 3.再合成 重组后母链中的缺口通过DNA多聚酶的作用合成核酸片段,然后由连接酶是新片段与旧链连接,至此重组修复完成。 重组修复并没有从亲代DNA中去除二聚体。当第二次复制时,留在母链中的二聚体仍使复制不能正常进行,复制经过损伤部位时所产生的切口,仍旧要用同样的重组过程来弥补,随着DNA复制的继续,若干代以后,虽然二聚体始终没有除去,但损伤的DNA链逐渐“稀释”,最后无损于正常生理功能,损伤也就得到了修复。 SOS修复 是SOS反应的一种功能。SOS反应是DNA受到损伤或脱氧核糖核酸的复制受阻时的一种诱导反应。在大肠杆菌中,这种反应由recA-lexA系统调控。正常情况下处于不活动状态。当有诱导信号如 DNA损伤或复制受阻形成暴露的单链时,recA蛋白的蛋白酶活力就会被激活,分解阻遏物lexA蛋白,使SOS反应有关的基因去阻遏而先后开放,产生一系列细胞效应。引起SOS反应的信号消除后,recA蛋白的蛋白酶活力丧失,lexA蛋白又重新发挥阻遏作用。 SOS 反应发生时, 可造成损伤修复功能的增强。如uvrA、uvrB、uvrC、uvrD、ssb、recA、recN和ruv基因发达从而增强切除修复、复制后修复和链断裂修复。而recA和umuD.C则参与一种机制不清的易错修复,使细胞存活率增加,突变率也增加。 除修复作用外,SOS反应还可造成细胞分裂受阻、溶原性噬菌体释放和DNA复制形式的改变。后者指DNA聚合酶I*的形成,使DNA复制的准确性降低并可通过损伤部位。此时,DNA复制的起始也无需新合成蛋白。 在真核细胞中,虽然还不清楚具体过程,但肯定存在可诱导的易错修复。酵母RAD6系统就是一种易错修复系统。在哺乳类细胞中,DNA损伤可诱导细胞内病毒的释放、病毒转化作用的加强、染色体重组增强和细胞纤溶酶激活物的形成等。并且还发现了和大肠杆菌相似的ω-复活效应和ω-诱变效应。由于这种反应可增强突变、染色体重排和病毒的活动,以及对 DNA复制形式的影响,可能与癌基因激活和肿瘤形成有直接的关系。因而,SOS反应可作为检测药物致癌性的指标,而抑制SOS反应的药物则可减少突变和癌变。这类物质被称之为抗变剂。 适应性修复 1977年美国学者L.萨姆森等在大肠杆菌中发现的不同于 SOS修复的又一种诱导反应,它可以修复鸟嘌呤碱基的甲基化。如先以每毫升培养基 1微克的诱变剂N-甲基-N'-硝基-亚硝基胍 (MNNG)培养大肠杆菌两小时,就能使大肠杆菌对MNNG浓度高几百倍的环境产生抗性。这是由于 MNNG引起的DNA链上的鸟嘌呤甲基化诱导合成甲基受体蛋白,这种甲基受体蛋白分子的半胱氨酸能和甲基基团结合形成S-甲基半胱氨酸,从而使甲基化的鸟嘌呤碱基得以修复。 链断裂修复 包括DNA分子的单链断裂修复、双链断裂修复和染色体的断裂重接修复。在连接酶的参与下这些断裂能够迅速地以重接的方式修复。这种修复有两个特点:一是不稳定性,重接后又可以再度离解;二是不正确性,经常发生随机的重接错误。 链交联修复 起始步骤是在糖基酶的催化下解开交联的一条臂, 通过碱基切除的方式先修复合成其中一条单链,然后再在内切酶的催化下,以核苷酸切除修复的方式从相反的方向修复对侧的单链片断。 DNA损伤修复-检测方法 大部分DNA损伤修复都依赖于DNA的修复合成,所以对修复合成的测定常用来作为DNA修复的检测方法。常用的有以下几种: 放射自显影法 在细胞培养物中加入氚标记的胸腺嘧啶核苷等放射源,用放射自显影方法计数银颗粒数来测定修复合成过程中参入到DNA分子中的量。 液体闪烁计数法 用液体闪烁计数器测定培养物中的放射源因修复合成而参入到DNA分子中的量。这一方法适用于大批量样本。 超速离心法 一种应用比较广泛的方法,可应用于切除修复、复制后修复及链断裂修复方式的检测。一般是用氚标记溴脱氧尿嘧啶核苷等参入到修复合成的DNA分子中去以改变DNA分子的重量(BrdU的分子量比尿嘧啶核苷大),通过超速离心可以从沉降系数不同的各组分中收集修复合成中参入量不同的DNA片断,然后分别测定其放射性的强度来判断修复合成的多少。 病毒宿主细胞复活法 以SV40病毒、腺病毒、疱疹病毒、噬菌体等感染培养的人体细胞或细菌,然后以紫外线等处理以造成病毒DNA分子的损伤,因为病毒DNA分子损伤的修复是靠宿主细胞的修复酶系统,所以受损伤的病毒能否继续生存繁殖可间接地反映宿主细胞的修复功能。 姐妹染色单体互换(SCE)法 姐妹染色单体互换率的检测也能反映一部分DNA修复功能。人类中的某些先天性DNA修复缺陷疾病如布卢姆氏综合征患者的自发SCE显著增高;另一些如着色性干皮病则诱发SCE增高。这是由于DNA修复功能的缺陷导致染色体稳定性减弱所致。 实践意义DNA修复与肿瘤各种原因引起的DNA损伤可以通过各种方式修复。如果修复功能有缺陷,DNA损伤就可能造成两种结果:一是细胞亡;二是发生基因突变,或进而恶性转化为肿瘤细胞。先天性DNA修复缺陷疾病患者容易发生各种恶性肿瘤,例如人类的着色性干皮病患者的皮肤对阳光过度敏感, 照射后出现红斑、水肿,继而出现色素沉着、干燥、角化过度,结果可导致黑色素瘤、基底细胞癌、鳞状上皮癌及棘状上皮瘤的发生。通过细胞融合的研究表明具有不同临床表现的该病患者有明显的遗传异质性,可以分为A、B、C、D、E、F、G七个互补群及变种,A-G互补群表现为不同程度的核酸内切酶缺乏引起的切除修复功能缺陷,变种的切除修复功能正常,但复制后修复的功能有缺陷。又如范可尼贫血临床主要表现的特征如再生障碍性贫血、生长迟缓、易患白血病等是由于先天性链交联等修复缺陷所致。其他如布卢姆氏综合征和毛细血管扩张共济失调患者都易患白血病和淋巴肉瘤,也是先天性DNA修复缺陷造成的。 值得注意的是DNA修复功能缺陷虽可引起肿瘤的发生,但已癌化细胞本身的DNA修复功能并不低下,相反地却显著地升高,并能够充分地修复化疗药物引起的DNA损伤, 这也是大多数抗癌药物不能奏效的原因。地鼠细胞的DNA损伤修复的方式以复制后修复为主, 如果在地鼠的浆细胞瘤细胞的培养物中加入环磷酰胺等抗癌药后,瘤细胞照样生长,如果加入环磷酰胺的同时再加入咖啡因(复制后修复的抑制剂),则瘤细胞的生长受到了明显的抑制。所以DNA修复的研究可为肿瘤联合化疗提供方案。 DNA损伤修复-DNA修复与衰老 从DNA修复功能的比较研究中发现寿命长的动物(象、牛等)修复功能较强;寿命短的动物 (仓鼠、小鼠、鼩鼱等)修复功能较弱。人的DNA修复功能也很强,但到一定年龄后逐渐减弱,同时突变细胞数也相应增加,所以老年人癌的发病率也比较高。检测各年龄组正常人的染色体畸变率和 DNA修复功能证实了这一点。人类中常染色体隐性遗传的早老症和韦尔纳氏综合征患者一般早年于心血管疾病或恶性肿瘤;患者的体细胞极易衰老,是研究老年病与DNA修复关系的很好模型。 DNA修复与免疫 DNA修复功能先天缺陷的病人的免疫系统也常是有缺陷的,主要是 T淋巴细胞功能的缺陷。随着年龄的增长细胞中的DNA修复功能逐渐衰退,如果同时发生免疫监视机能的障碍,便不能及时清除癌化的突变细胞,从而导致发生肿瘤。所以, 衰老、DNA修复、免疫和肿瘤四者是紧密关联的。 DNA损伤修复-DNA修复与环境致癌因子的检测 DNA修复的研究已被应用于检测各种化学致癌物。一般的方法是在体外传代培养的正常人皮肤成纤维细胞或大鼠原代培养的肝细胞中加入被检物,培养一定时间后再加入继续培养,然后收集细胞作放射自显影或液体闪烁的测试,如果参入量显著增高,表明被检物可疑为诱变剂或致癌剂。微生物培养的方法则更为简便、迅速,例如可以用枯草杆菌重组功能发生缺陷的突变型来进行检测,这些突变型由于丧失了重组功能而不能进行重组修复,因而更容易为许多诱变剂和致癌剂所杀伤致。 关于DNA修复机制方面的许多问题还有待于进一步的研究阐明。例如从原核生物开始到真核生物的高等哺乳类动物各依靠哪些方式来修复受损伤的DNA分子,修复方式又是怎样随物种的进化而发生演变的,修复缺陷的遗传异质性的本质又是什么,免疫缺陷和DNA修复功能缺陷的因果关系又是怎样的等等。
微生物育种技术有哪些
损伤类型
DNA分子的损伤类型有多种。UV照射后DNA分子上的两个相邻的胸腺嘧啶 (T)或胞嘧啶(C)之间可以共价键连结形成环丁酰环,这种环式结构称为二聚体。胸腺嘧啶二聚体的形成是 UV对DNA分子的主要损伤方式。
Χ射线、γ射线照射细胞后,由细胞内的水所产生的自由基既可使DNA分子双链间氢键断裂,也可使它的单链或双链断裂。化学物中的博莱霉素、甲基磺酸甲烷等烷化剂也能造成链的断裂。
丝裂霉素C可造成DNA分子单链间的交联,这种情况常发生在两个单链的对角的鸟嘌呤之间。链的交联也往往带来DNA分子的断裂。
DNA 分子还可以发生个别碱基或核苷酸的变化。例如碱基结构类似物5-溴尿嘧啶等可以取代个别碱基,亚硝酸能引起碱基的氧化脱氨反应,原黄素(普鲁黄)等吖啶类染料和甲基氨基偶氮苯等芳香胺致癌物可以造成个别核苷酸对的增加或减少而引起移码突变(见基因突变)。
一种 DNA损伤剂往往可以同时引起几种类型的损伤,其损伤效应的大小和类型与剂量及细胞所处的周期状态有关。
修复方式
光复活又称光逆转。这是在可见光(波长3000~6000埃)照射下由光复活酶识别并作用于二聚体,利用光所提供的能量使环丁酰环打开而完成的修复过程 (图2)。光复活酶已在细菌、酵母菌、原生动物、藻类、蛙、鸟类、哺乳动物中的有袋类和高等哺乳类及人类的淋巴细胞和皮肤成纤维细胞中发现。这种修复功能虽然普遍存在,但主要是低等生物的一种修复方式,随着生物的进化,它所起的作用也随之削弱。
切除修复
又称切补修复。最初在大肠杆菌中发现,包括一系列复杂的酶促DNA修补复制过程,主要有以下几个阶段:核酸内切酶识别DNA损伤部位,并在5’端作一切口,再在外切酶的作用下从5’端到3’端方向切除损伤;然后在 DNA多聚酶的作用下以损伤处相对应的互补链为模板合成新的 DNA单链片断以填补切除后留下的空隙;最后再在连接酶的作用下将新合成的单链片断与原有的单链以磷酸二酯链相接而完成修复过程(图3)。
切除修复并不限于修复嘧啶二聚体,也可以修复化学物等引起的其他类型的损伤。从切除的对象来看,切除修复又可以分为碱基切除修复和核苷酸切除修复两类。碱基切除修复是先由糖基酶识别和去除损伤的碱基,在DNA单链上形成无嘌呤或无嘧啶的空位,这种空缺的碱基位置可以通过两个途径来填补:一是在插入酶的作用下以正确的碱基插入到空缺的位置上;二是在核酸内切酶的催化下在空位的5’端切开DNA链,从而触发上述一系列切除修复过程。对于各种不同类型的碱基损伤都有特异的糖基酶加以识别。不同的核酸内切酶对于不同类型损伤的识别也具有相对的特异性。
切除修复功能广泛存在于原核生物和真核生物中,也是人类的主要修复方式,啮齿动物 (如仓鼠、小鼠)先天缺乏切除修复的功能。
1978 年美国学者 J.L.马克斯发现真核生物与原核生物间由于染色质结构不同, 切除修复的过程也不相同。真核生物的DNA分子不象原核生物那样是裸露的,而是缠绕在组蛋白上形成串珠状的核小体结构。真核生物中的嘧啶二聚体的切除分两个阶段:快速切除期,约需2~3小时,主要切除未与组蛋白结合的DNA部分的损伤;缓慢切除期,至少要持续35小时而且需要有某种控制因子去识别这种损伤,使DNA受损部分从核小体中暴露出来,然后经过一系列步骤完成切除修复,然后修复的DNA分子再缠绕在组蛋白上重新形成核小体。
重组修复
重组修复从 DNA分子的半保留复制开始,在嘧啶二聚体相对应的位置上因复制不能正常进行而出现空缺,在大肠杆菌中已经证实这一DNA损伤诱导产生了重组蛋白,在重组蛋白的作用下母链和子链发生重组,重组后原来母链中的缺口可以通过DNA多聚酶的作用,以对侧子链为模板合成单链DNA片断来填补,最后也同样地在连接酶的作用下以磷酸二脂键连接新旧链而完成修复过程。重组修复也是啮齿动物主要的修复方式。重组修复与切除修复的最大区别在于前者不须立即从亲代的DNA分子中去除受损伤的部分,却能保证DNA复制继续进行。原母链中遗留的损伤部分,可以在下一个细胞周期中再以切除修复方式去完成修复。
重组修复的主要步骤有:
1.复制
含有TT或其他结构损伤的DNA仍然可以正常的进行复制,但当复制到损伤部位时,子代DNA链中与损伤部位相对应的位置出现切口,新合成的子链比未损伤的DNA链要短。
2.重组
完整的母链与有缺口的子链重组,缺口由母链来的核苷酸片段弥补。
3.再合成
重组后母链中的缺口通过DNA多聚酶的作用合成核酸片段,然后由连接酶是新片段与旧链连接,至此重组修复完成。
重组修复并没有从亲代DNA中去除二聚体。当第二次复制时,留在母链中的二聚体仍使复制不能正常进行,复制经过损伤部位时所产生的切口,仍旧要用同样的重组过程来弥补,随着DNA复制的继续,若干代以后,虽然二聚体始终没有除去,但损伤的DNA链逐渐“稀释”,最后无损于正常生理功能,损伤也就得到了修复。
SOS修复
是SOS反应的一种功能。SOS反应是DNA受到损伤或脱氧核糖核酸的复制受阻时的一种诱导反应。在大肠杆菌中,这种反应由recA-lexA系统调控。正常情况下处于不活动状态。当有诱导信号如 DNA损伤或复制受阻形成暴露的单链时,recA蛋白的蛋白酶活力就会被激活,分解阻遏物lexA蛋白,使SOS反应有关的基因去阻遏而先后开放,产生一系列细胞效应。引起SOS反应的信号消除后,recA蛋白的蛋白酶活力丧失,lexA蛋白又重新发挥阻遏作用。
SOS 反应发生时, 可造成损伤修复功能的增强。如uvrA、uvrB、uvrC、uvrD、ssb、recA、recN和ruv基因发达从而增强切除修复、复制后修复和链断裂修复。而recA和umuD.C则参与一种机制不清的易错修复,使细胞存活率增加,突变率也增加。
除修复作用外,SOS反应还可造成细胞分裂受阻、溶原性噬菌体释放和DNA复制形式的改变。后者指DNA聚合酶I*的形成,使DNA复制的准确性降低并可通过损伤部位。此时,DNA复制的起始也无需新合成蛋白。
在真核细胞中,虽然还不清楚具体过程,但肯定存在可诱导的易错修复。酵母RAD6系统就是一种易错修复系统。在哺乳类细胞中,DNA损伤可诱导细胞内病毒的释放、病毒转化作用的加强、染色体重组增强和细胞纤溶酶激活物的形成等。并且还发现了和大肠杆菌相似的ω-复活效应和ω-诱变效应。由于这种反应可增强突变、染色体重排和病毒的活动,以及对 DNA复制形式的影响,可能与癌基因激活和肿瘤形成有直接的关系。因而,SOS反应可作为检测药物致癌性的指标,而抑制SOS反应的药物则可减少突变和癌变。这类物质被称之为抗变剂。
适应性修复
1977年美国学者L.萨姆森等在大肠杆菌中发现的不同于 SOS修复的又一种诱导反应,它可以修复鸟嘌呤碱基的甲基化。如先以每毫升培养基 1微克的诱变剂N-甲基-N'-硝基-亚硝基胍 (MNNG)培养大肠杆菌两小时,就能使大肠杆菌对MNNG浓度高几百倍的环境产生抗性。这是由于 MNNG引起的DNA链上的鸟嘌呤甲基化诱导合成甲基受体蛋白,这种甲基受体蛋白分子的半胱氨酸能和甲基基团结合形成S-甲基半胱氨酸,从而使甲基化的鸟嘌呤碱基得以修复。
链断裂修复
包括DNA分子的单链断裂修复、双链断裂修复和染色体的断裂重接修复。在连接酶的参与下这些断裂能够迅速地以重接的方式修复。这种修复有两个特点:一是不稳定性,重接后又可以再度离解;二是不正确性,经常发生随机的重接错误。
链交联修复
起始步骤是在糖基酶的催化下解开交联的一条臂, 通过碱基切除的方式先修复合成其中一条单链,然后再在内切酶的催化下,以核苷酸切除修复的方式从相反的方向修复对侧的单链片断。
检测方法
大部分DNA损伤修复都依赖于DNA的修复合成,所以对修复合成的测定常用来作为DNA修复的检测方法。常用的有以下几种:
放射自显影法
在细胞培养物中加入氚标记的胸腺嘧啶核苷等放射源,用放射自显影方法计数银颗粒数来测定修复合成过程中参入到DNA分子中的量。
液体闪烁计数法
用液体闪烁计数器测定培养物中的放射源因修复合成而参入到DNA分子中的量。这一方法适用于大批量样本。
超速离心法
一种应用比较广泛的方法,可应用于切除修复、复制后修复及链断裂修复方式的检测。一般是用氚标记溴脱氧尿嘧啶核苷等参入到修复合成的DNA分子中去以改变DNA分子的重量(BrdU的分子量比尿嘧啶核苷大),通过超速离心可以从沉降系数不同的各组分中收集修复合成中参入量不同的DNA片断,然后分别测定其放射性的强度来判断修复合成的多少。
病毒宿主细胞复活法
以SV40病毒、腺病毒、疱疹病毒、噬菌体等感染培养的人体细胞或细菌,然后以紫外线等处理以造成病毒DNA分子的损伤,因为病毒DNA分子损伤的修复是靠宿主细胞的修复酶系统,所以受损伤的病毒能否继续生存繁殖可间接地反映宿主细胞的修复功能。
姐妹染色单体互换(SCE)法
姐妹染色单体互换率的检测也能反映一部分DNA修复功能。人类中的某些先天性DNA修复缺陷疾病如布卢姆氏综合征患者的自发SCE显著增高;另一些如着色性干皮病则诱发SCE增高。这是由于DNA修复功能的缺陷导致染色体稳定性减弱所致。
其方法通常为自然选育和人工选育两类,可单独使用,也可交叉进行。
DNA Shuffling技术
编辑
随着PCR技术的发展和应用,1994年美国的stemmer提出了一个全新的人工分子进化技术——DNA Shuffling(又称洗牌技术),该技术能模拟生物在数百年间发生的分子进化过程,并可在短的实验循环中定向筛选出特定基因编码的酶蛋白活性提高几百倍甚至上万倍的功能性突变基因。其基本原理是将来源不同但功能相同的一组同源基因,用DNA核酸酶I进行消化 产生随机小片段,由这些小片段组成一个文库,使之互为引物和模板,进行PCR扩增,当一个基因拷贝片段作为另一个基因拷贝的引物时,引起模板转换,重组因而发生,导入体内后,选择正突变体作新一轮的体外重组。一般通过2-3次循环,课获得产物大幅度提高的重组突变体。
2自然选育
编辑
对自然界中的微生物,在未经人工诱变或杂交处理的情况下进行分离和纯化(见微生物的分离和纯化),然后进行纯培养和测定(见微生物测定法),择优选取微生物的菌种。这种方法简单易行,但获得优良菌种的几率小,一般难以满足生产的需要。
3人工选育
编辑
分诱变育种和杂交育种两种。
诱变育种
以诱发基因突变为手段的微生物育种技术。1927年,H.J. 马勒发现X射线有增加突变率的效果;1944年,C.奥尔巴克首次发现氮芥子气的诱变效应;随后,人们陆续发现许多物理的(如紫外线、γ射线、快中子等)和化学的诱变因素。化学诱变因素分为3种:①诱变剂与一个或多个核酸碱基发生化学变化,使DNA复制时碱基置换而引起变异,如羟胺亚硝酸、硫酸二乙酯、甲基磺酸乙酯、硝基胍、亚硝基甲基脲等;②诱变剂是天然碱基的结构类似物,在复制时参入DNA分子中引起变异,如5-溴尿嘧啶、5-氨基尿嘧啶、8-氮鸟嘌呤和2-氨基嘌呤等;③诱变剂在DNA分子上减少或增加1~2个碱基,使碱基突变点以下全部遗传密码的转录和翻译发生错误,从而导致码组移动突变体的出现,如吖啶类物质和一些氮芥衍生物(ICR)等。诱变育种操作简便,突变率高,突变谱广,它不仅能提高产量,改进质量,还可扩大产品品种和简化工艺条件。如1943年从自然界分离到的青霉素产生菌的效价只有20单位/毫升,经过一系列的诱变育种后,效价已达40000单位/毫升;金霉素产生菌经诱变后,发酵液中又积累了去甲基金霉素;谷氨酸棒杆菌1299经紫外线诱变后,有的能产赖氨酸,有的能产缬氨酸,增加了产品的种类;土霉素产生菌经诱变后,选到了能减少泡沫的突变菌株,从而提高了发酵罐的利用率。诱变育种的不足是缺乏定向性。
杂交育种
不同基因型的品系或种属间,通过交配或体细胞融合等手段形成,或者是通过转化和转导形成重组体,再从这些或重组体或是它们的后代中筛选优良菌种。通过这种方法可以分离到具有新的基因组合的重组体,也可以选出由于具有优势而生长旺盛、生物量多、适应性强以及某些酶活性提高的新品系。杂交育种的方式因实验菌株的生殖方式不同而异,如有性杂交、准性重组、原生质体融合、转化、转导、质粒的转化等;但是,选择亲株、分离群体后代的培养、择优去劣和遗传分析的过程基本是相同的。杂交法一般指有交配反应的菌株进行交配或接合而形成。这种方法适用范围很广,在酒类、面包、药用和饲料酵母的育种,链霉菌和青霉菌抗生素产量的提高,曲霉的酶活性增强等方面均已获得成功。
体细胞融合是在不具性反应的品系或种属间细胞融合和染色体重组,先用酶溶解细胞壁,再用氯化钙-聚乙二醇处理原生质体,促使融合,获得。此法在工业微生物的菌种改良中有积极作用。
转化和转导首先应用于细菌,现已广泛用于链霉菌和酵母菌等。随着重组DNA技术的发展,重组质粒的构建和转化系统的确立,已可将目的基因转移到受体细胞内,得到能产生具有重要经济价值的生物活性物质(如疫苗、酶等)的株系。
微生物与酿造工业、食品工业、生物制品工业等的关系非常密切,其菌株的优良与否直接关系到多种工业产品的好坏,甚至影响人们的日常生活质量,所以培育优质、高产的微生物菌株十分必要。微生物育种的目的就是要把生物合成的代谢途径朝人们所希望的方向加以引导,或者促使细胞内发生基因的重新组合优化遗传性状,人为地使某些代谢产物过量积累,获得所需要的高产、优质和低耗的菌种。作为途径之一的诱变育种一直被广泛应用。目前,国内微生物育种界主要采用的仍是常规的物理及化学因子等诱变方法。此外,原生质体诱变技术已广泛地应用于酶制剂、抗生素、氨基酸、维生素等的菌种选育中,并且取得了许多有重大应用意义的成果。
4诱变育种
编辑
1.1物理诱变
1.1.1紫外照射
紫外线照射是常用的物理诱变方法之一,是诱发微生物突变的一种非常有用的工具。DNA 和RNA 的嘌呤和嘧啶最大的吸收峰在260nm,因此在260nm 的紫外辐射是最有效的致剂。紫外辐射的作用已有多种解释,但比较确定的作用是使DNA 分子形成嘧啶二聚体[1]。二聚体的形成会阻碍碱基间正常配对,所以可能导致突变甚至亡[2]。
紫外照射诱变操作简单,经济实惠,一般实验室条件都可以达到,且出现正突变的几率较高,酵母菌株的诱变大多采用这种方法。
1.1.2电离辐射
γ- 射线是电离生物学上应用最广泛的电离射线之一,具有很高的能量,能产生电离作用,可直接或间接地改变DNA 结构。其直接效应是可以氧化脱氧核糖的碱基,或者脱氧核糖的化学键和糖- 磷酸相连接的化学键。其间接效应是能使水或有机分子产生自由基,这些自由基可以与细胞中的溶质分子发生化学变化,导致DNA 分缺失和损伤[2]。
除γ- 射线外的电离辐射还有X- 射线、β- 射线和快中子等。电离辐射有一定的局限性,操作要求较高,且有一定的危险性,通常用于不能使用其他诱变剂的诱变育种过程。
1.1.3离子注入
离子注入是20 世纪80 年代初兴起的一项高新技术,主要用于金属材料表面的改性。1986 年以来逐渐用于农作物育种,近年来在微生物育种中逐渐引入该技术[3]。
离子注入时,生物分子吸收能量,并且引起复杂的物理和化学上的变化,这些变化的中间体是各类活性自由基。这些自由基,可以引起其它正常生物分子的损伤,可使细胞中的染色体突变,DNA 链断裂,也可使质粒DNA 造成断裂。由于离子注入射程具有可控性,随着微束技术和精确定位技术的发展,定位诱变将成为可能[4]。
离子注入法进行微生物诱变育种,一般实验室条件难以达到,目前应用相对较少。
1.1.4 激光
激光是一种光量子流,又称光微粒。激光辐射可以通过产生光、热、压力和电磁场效应的综合应用,直接或间接地影响有机体,引起细胞染色体畸变效应、酶的激活或钝化,以及细胞分裂和细胞代谢活动的改变。光量子对细胞内含物中的任何物质一旦发生作用,都可能导致生物有机体在细胞学和遗传学特性上发生变异。不同种类的激光辐射生物有机体,所表现出的细胞学和遗传学变化也不同[5]。
激光作为一种育种方法,具有操作简单、使用安全等优点,近年来应用于微生物育种中取得不少进展。
1.1.5 微波
微波辐射属于一种低能电磁辐射,具有较强生物效应的频率范围在300MHz~300GHz,对生物体具有热效应和非热效应。其热效应是指它能引起生物体局部温度上升。从而引起生理生化反应;非热效应指在微波作用下,生物体会产生非温度关联的各种生理生化反应。在这两种效应的综合作用下,生物体会产生一系列突变效应[6]。
因而,微波也被用于多个领域的诱变育种,如农作物育种、禽兽育种和工业微生物育种,并取得了一定成果。
1.1.6 航天育种
航天育种,也称空间诱变育种,是利用高空气球、返回式卫星、飞船等航天器将作物种子、组织、器官或生命个体搭载到宇宙空间,利用宇宙空间特殊的环境使生物基因产生变异,再返回地面进行选育,培育新品种、新材料的作物育种新技术。空间环境因素主要有微重力,空间辐射,以及其它诱变因素如交变磁场,超真空环境等,这些因素交互作用导致生物系统遗传物的损伤,使生物发生诸如突变、染色体畸变、细胞失活、发育异常等。
航天育种较其它育种方法特殊,是航天技术与微生物育种技术的有机结合,技术含量高,成本高,个体研究者或一般研究单位都难以实现,只能与航天技术相结合,由国家来完成。
1.1.7 常压室温等离子体诱变育种
常压低温等离子体(Atmospheric and Room Temperature Plasma)简称为ARTP,指能够在大气压下产生温度在25-40 °C之间的、具有高活性粒子(包括处于激发态的氦原子、氧原子、氮原子、OH自由基等)浓度的等离子体射流。ARTP技术作为一种新型的物理方法,在微生物诱变育种领域有着广阔的应用前景。
等离子体中适当剂量的活性粒子作用于微生物,能够使微生物细胞壁/膜的结构及通透性改变,并引起基因损伤,菌株出现遗传物质损伤后,微生物启动SOS修复机制,其诱导产生DNA聚合酶Ⅳ和V,它们不具有3ˊ核酸外切酶校正功能,于是在DNA链的损伤部位即使出现不配对碱基,复制仍能继续前进。在此情况下允许错配可增加存活的机会。ARTP对遗传物质造成的损伤,多样性较高;又SOS诱导修复本身为容错性修复,因此,ARTP多样性的损伤将可能在修复过程中包容于DNA链中,在微生物进行复制修复时,其可能带来多样性的错配可能。
ARTP应用于微生物突变育种,成本低、操作方便,没有很多物理诱变设备(如离子束注入等)所需的离子或电子加速、真空和制冷等附属设备;ARTP对遗传物质的损伤机制多样,具有较高的正突变率,突变性能多样,对于真菌、细菌、藻类等都有效果;ARTP对环境无污染,保证操作者的人身安全,无论用何种气体放电,其均无有害气体产生。[1]
5化学诱变
编辑
2.1.1 烷化剂
烷化剂能与一个或几个核酸碱基反应,引起DNA 复制时碱基配对的转换而发生遗传变异,常用的烷化剂有甲基磺酸乙酯、亚硝基胍、乙烯亚胺、硫酸二乙酯等。
甲基磺酸乙酯(ethylmethane sulphonate,EMS) 是最常用的烷化剂,诱变率很高。它诱导的突变株大多数是点突变,该物质具有强烈致癌性和挥发性,可用5%硫代硫酸钠作为终止剂和解毒剂。
N- 甲基- N'- 硝基- N- 亚硝基胍(NTG) 是一种超诱变剂,应用广泛,但有一定毒性,操作时应该注意。在碱性条件下,NTG 会形成重氮甲烷(CH2N2),它是引起致和突变的主要原因。它的效应很可能是CH2N2 对DNA 的烷化作用引起的[2]。
硫酸二乙酯(DMS) 也很常用,但由于毒性太强,目前很少使用。乙烯亚胺,生产的较少,很难买到。使用浓度0.0001%~0.1%,高度致癌性,使用时需要使用缓冲液配置。
2.1.2 碱基类似物
碱基类似物分子结构类似天然碱基,可以掺入到DNA 分子中导致DNA 复制时产生错配,mRNA 转录紊乱,功能蛋白重组,表型改变。该类物质毒性相对较小,但负诱变率很高,往往不易得到好的突变体。主要有5- 氟尿嘧啶(5- FU) 、5- 溴尿嘧啶(5- BU) 、6- 氯嘌呤等。程世清等[25]用5- BU 对产色素菌(分枝杆菌T17- 2- 39) 细胞进行诱变,生物量平均提高22.5%.
2.1.3 无机化合物
诱变效果一般,危险性较小。常用的有氯化锂,白色结晶,使用时配成0.1%~0.5%的溶液,或者可以直接加到诱变固体培养基中,作用时间为30min~2d。亚硝酸易分解,所以现配现用。常用亚硝酸钠和盐酸制取,将亚硝酸钠配成0.01~0.1mol/L 的浓度,使用时加入等浓度等体积的盐酸即可。
2.1.4 其他
盐酸羟胺,一种还原剂,作用于C 上,使G- C 变为A- T。也较常用,使用浓度为0.1%~0.5%,作用时间60min~2h。
此外,诱变时将两种或多种诱变因子复合使用,或者重复使用同一种诱变因子,效果更佳。顾正华等[7]以谷氨酸棒杆菌ATCC- 13761 为出发菌株,经DMS 和NTG 多次诱变处理,获得一株L- 组氨酸产生菌。
2、诱变剂
2.1 诱变剂的选择
在选择诱变剂时,需要注意诱变剂的专一性,即某一诱变剂或诱变处理优先使基因组的某些部分发生突变而别的部分即使有也很少发生突变。对诱变剂专一性的分子基础不十分了解万尽管有关的修复途径必定对此有影响,但它们的关系并不那么简单,其它各种因素,包括诱变处理的环境条件也能影响突变类型。
工业遗传学家很难正确地预言改良某一菌种时需要何种类型的分子水平的突变。因此,为了产生类型尽可能多的突变体,最适当的方法是采用几种互补类型的诱变处理。远紫外无疑是所有诱变剂中最为合适的,似乎可以诱导所有已知的损伤类型。采取有效、安全的预防方法也很容易。在化学诱变剂中,液体试剂比粉末试剂更易进行安全操作。的另一个不利因素是它有产生紧密连锁的突变丛的趋势,尽管这种效应在某些体系中能成为有利条件。最后,必须认识到可能某些特异菌系用某些诱变剂是不能被诱变的。当然这一点通过测定易检出的突变体,如抗药性突变体或原养型回复突变体的诱变动力学可以相当容易地得到验证。[8]
2.2 诱变剂的剂量
从随机筛选的最佳效果看,诱变剂的最适剂量就是在用于筛选的存活群体中得到最高比例的所需要的突变体,因为这会使在测定效价的阶段更省力。
因此在菌株改良以前,为了决定所用诱变剂的最适剂量,并为突变性的增强技术打下基础,聪明的做法通常是测定不同诱变剂处理不同菌种时的突变动力学。用高单位突变本身来测定最适剂量有时是不可能的,因为这种突变的检测很困难。但如使用容易检出的标记如耐药标记,只要估计到方法的局限性,还是可以提供一些有价值的资料的。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。