吖啶橙染色细胞自噬图片-吖啶橙的染色原理

RNA与DNA最重要的区别一是RNA只有一条链,二是它的碱基组成与DNA的不同,RNA没有碱基T(胸腺嘧啶),而有碱基U(尿嘧啶)。所以导致他们有以下性质上的不同。

1.两性解离:DNA无,只有酸解离,碱基被屏蔽(在分子内部形成了H键)。RNA有,有PI。

2.粘度大:DNA;RNA,粘度由分子长度/直径决定,DNA为线状分子,RNA为线团。

3.碱的作用:DNA耐碱RNA易被碱水解。

4.显色反应:

鉴别DNA和RNA+浓HCl RNA ------→ 绿色化合物

DNA ------→ 蓝紫色化合物苔黑酚

二苯胺啡啶溴红(荧光染料)和溴嘧啶都可对DNA染色,原理是卡在分子中,DNA的离心和电泳显色可用它们。

DNA和RNA的鉴别染色

利用吖啶橙的变色特性可鉴别DNA和RNA。吖啶橙作为一种荧光染料已被用于染色固定,非固定细胞核酸,或作溶酶体的一种标记。观察亡细胞荧光变色性变化以及区别分裂细胞和静止细胞群体。虽然测定DNA和RNA含量时较难获得好的重复性结果,但该方法已被许多实验室广泛采用。

5.溶解性:都溶于水而不溶于乙醇,因此,常用乙醇来沉淀溶液中的DNA和RNA。DNA溶于苯酚而RNA不溶,故可用苯酚来沉淀RNA。

6.紫外吸收:核酸的λm=260nm,碱基展开程度越大,紫外吸收就越厉害。当A=1时,DNA:50ug/ml,RNA和单链DNA:40ug/ml,寡核苷酸:20ug/ml。用A260/A280还可来表示核酸的纯度。

7.沉降速度:对于拓扑异构体(核苷酸数目相同的核酸),其沉降速度从达到小依次为:RNA ; 超螺旋DNA > 解链环状DNA ; 松弛环状DNA ; 线形DNA也就是在离心管中最上层是线形DNA,最下面是RNA。

8.电泳:核苷酸、核酸均可以进行电泳,泳动速度主要由分子大小来决定,因此,电泳是测定核酸分子量的好方法。

9.DNA分子量测定最直接的方法:用适当浓度的EB(溴嘧啶)染色DNA,可以将其他形式的DNA变成线形DNA,用电镜测出其长度,按B-DNA模型算出bp数,根据核苷酸的平均分子量就可计算出DNA的分子量。

聚合酶链反应(Polymerase Chain Reaction ,PCR)是80年代中期发展起来的体外核酸扩增技术。它具有特异、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究 的目的基因或某一DNA片段于数小时内扩增至十万乃至百万倍,使肉眼能直接观察和判断;可从一根毛发、一滴血、甚至一个细胞中扩增出足量的DNA供分析研 究和检测鉴定。过去几天几星期才能做到的事情,用PCR几小时便可完成。PCR技术是生物医学领域中的一项革命性创举和里程碑。

PCR技术简史

PCR的最早设想 核酸研究已有100多年的历史,本世纪60年代末、70年代初人们致力于研究基因的体外分离技术,Korana于1971年最早提出核酸体外扩增的设想:“经过DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因”。

PCR的实现 1985年美国PE-Cetus公司人类遗传研究室的Mullis等发明了具有划时代意义的聚合酶链反应。其原理类似于DNA的体内复制,只是在试管中给 DNA的体外合成提供以致一种合适的条件---摸板DNA,寡核苷酸引物,DNA聚合酶,合适的缓冲体系,DNA变性、复性及延伸的温度与时间。

PCR的改进与完善 Mullis最初使用的DNA聚合酶是大肠杆菌DNA聚合酶I的 Klenow片段,其缺点是:①Klenow酶不耐高温,90℃会变性失活,每次循环都要重新加。②引物链延伸反应在37℃下进行,容易发生模板和引物之 间的碱基错配,其PCR产物特异性较差,合成的DNA片段不均一。此种以Klenow酶催化的PCR技术虽较传统的基因扩增具备许多突出的优点,但由于 Klenow酶不耐热,在DNA模板进行热变性时,会导致此酶钝化,每加入一次酶只能完成一个扩增反应周期,给PCR技术操作程序添了不少困难。这使得 PCR技术在一段时间内没能引起生物医学界的足够重视。1988年初,Keohanog改用T4 DNA聚合酶进行PCR,其扩增的DNA片段很均一,真实性也较高,只有所期望的一种DNA片段。但每循环一次,仍需加入新酶。1988年Saiki 等从温泉中分离的一株水生嗜热杆菌(thermus aquaticus) 中提取到一种耐热DNA聚合酶。此酶具有以下特点:①耐高温,在70℃下反应2h后其残留活性大于原来的90%,在93℃下反应2h后其残留活性是原来的 60%,在95℃下反应2h后其残留活性是原来的40%。②在热变性时不会被钝化,不必在每次扩增反应后再加新酶。③大大提高了扩增片段特异性和扩增效 率,增加了扩增长度(2.0Kb)。由于提高了扩增的特异性和效率,因而其灵敏性也大大提高。为与大肠杆菌多聚酶I Klenow片段区别,将此酶命名为Taq DNA多聚酶(Taq DNA Polymerase)。此酶的发现使PCR广泛的被应用。

PCR技术基本原理

PCR技术的基本原理 类似于DNA的 天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加 热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引 物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合 物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需 2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝。

PCR的反应动力学 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA 扩增量可用Y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%, 但在实际反应中平均效率达不到理论值。反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进 入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。大多数情 况下,平台期的到来是不可避免的。

PCR扩增产物 可分为长产物片段和短产物片段两部分。短产物片段的长度严格地限定在两个引物链5’端之间,是需要扩增的特定片段。短产物片段和长产物片段是由于引物所 结合的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中,以两条互补的DNA为模板,引物是从3’端开始延伸,其5’端是固定的,3’端则没 有固定的止点,长短不一,这就是“长产物片段”。进入第二周期后,引物除与原始模板结合外,还要同新合成的链(即“长产物片段”)结合。引物在与新链结合 时,由于新链模板的5’端序列是固定的,这就等于这次延伸的片段3’端被固定了止点,保证了新片段的起点和止点都限定于引物扩增序列以内、形成长短一致的 “短产物片段”。不难看出“短产物片段”是按指数倍数增加,而“长产物片段”则以算术倍数增加,几乎可以忽略不计, 这使得PCR的反应产物不需要再纯化,就能保证足够纯DNA片段供分析与检测用。

PCR反应体系与反应条件

标准的PCR反应体系:

10×扩增缓冲液 10ul

4种dNTP混合物 各200umol/L

引物 各10~100pmol

模板DNA 0.1~2ug

Taq DNA聚合酶 2.5u

Mg2+ 1.5mmol/L

加双或三蒸水至 100ul

PCR反应五要素: 参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+

引物: 引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。

设计引物应遵循以下原则:

①引物长度: 15-30bp,常用为20bp左右。

②引物扩增跨度: 以200-500bp为宜,特定条件下可扩增长至10kb的片段。

③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。

④避免引物内部出现二级结构,避免两条引物间互补,特别是3’端的互补,否则会形成引物二聚体,产生非特异的扩增条带。

⑤引物3’端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。

⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。

⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。

引物量: 每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。

酶及其浓度 目前有两种Taq DNA聚合酶供应, 一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。催化一典型的PCR反应约需酶量2.5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少。

dNTP的质量与浓度 dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性。dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris。HCL的缓冲液将其PH调节到7.0~7.5,小量分装, -20℃冰冻保存。多次冻融会使dNTP降解。在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配。浓度过低又会降低PCR产物的产量。dNTP能与Mg2+结合,使游离的Mg2+浓度降低。

模板(靶基因)核酸 模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本。 SDS的主要功能是: 溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀;蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀 核酸。提取的核酸即可作为模板用于PCR反应。一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接 用于PCR扩增。RNA模板提取一般采用异硫氰酸胍或蛋白酶K法,要防止RNase降解RNA。

Mg2+浓度 Mg2+对PCR扩增的特异性和产量有显著的影响,在一般的PCR反应中,各种dNTP浓度为200umol/L时,Mg2+浓度为1.5~2.0mmol/L为宜。Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少。

PCR反应条件的选择

PCR反应条件为温度、时间和循环次数。

温度与时间的设置: 基于PCR原理三步骤而设置变性-退火-延伸三个温度点。在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸。对于较短靶基因(长度为100~300bp时)可采用二温度点法, 除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度Taq DNA酶仍有较高的催化活性)。

①变性温度与时间:变性温度低,解链不完全是导致PCR失败的最主要原因。一般情况下,93℃~94℃lmin足以使模板DNA变性,若低于93℃则 需延长时间,但温度不能过高,因为高温环境对酶的活性有影响。此步若不能使靶基因模板或PCR产物完全变性,就会导致PCR失败。

②退火(复性)温度与时间:退火温度是影响PCR特异性的较重要因素。变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合。由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞。退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长 度。对于20个核苷酸,G+C含量约50%的引物,55℃为选择最适退火温度的起点较为理想。引物的复性温度可通过以下公式帮助选择合适的温度:

Tm值(解链温度)=4(G+C)+2(A+T)

复性温度=Tm值-(5~10℃)

在Tm值允许范围内, 选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性。复性时间一般为30~60sec,足以使引物与模板之间完全结合。

③延伸温度与时间:Taq DNA聚合酶的生物学活性:

70~80℃ 150核苷酸/S/酶分子

70℃ 60核苷酸/S/酶分子

55℃ 24核苷酸/S/酶分子

高于90℃时, DNA合成几乎不能进行。

PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合。PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够 的。3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min。延伸进间过长会导致非特异性扩增带的出现。对低浓度模板的扩增,延伸时间要稍长些。

循环次数 循环次数决定PCR扩增程度。PCR循环次数主要取决于模板DNA的浓度。一般的循环次数选在30~40次之间,循环次数越多,非特异性产物的量亦随之增多。

PCR反应特点

特异性强 PCR反应的特异性决定因素为:

①引物与模板DNA特异正确的结合;

②碱基配对原则;

③Taq DNA聚合酶合成反应的忠实性;

④靶基因的特异性与保守性。

其中引物与模板的正确结合是关键。引物与模板的结合及引物链的延伸是遵循碱基配对原则的。聚合酶合成反应的忠实性及Taq DNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度。再通过选择特异性和保守性高的靶基因区,其特异性程度就更高。

灵敏度高 PCR产物的生成量是以指数方式增加的,能将皮克(pg=10-12g)量级的起始待测模板扩增到微克(ug=10-6g)水平。能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR的灵敏度可达3个RFU(空斑形成单位);在细菌学中最小检出率为3个细菌。

简便、快速 PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应。扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广。

对标本的纯度要求低 不需要分离病毒或细菌及培养细胞,DNA 粗制品及总RNA均可作为扩增模板。可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等粗制的DNA扩增检测。 PCR扩增产物分析

PCR产物是否为特异性扩增 ,其结果是否准确可靠,必须对其进行严格的分析与鉴定,才能得出正确的结论。PCR产物的分析,可依据研究对象和目的不同而采用不同的分析方法。

凝胶电泳分析:PCR产物电泳,EB溴乙锭染色紫外仪下观察,初步判断产物的特异性。PCR产物片段的大小应与预计的一致,特别是多重PCR,应用多对引物,其产物片断都应符合预讦的大小,这是起码条件。

琼脂糖凝胶电泳: 通常应用1~2%的琼脂糖凝胶,供检测用。

聚丙烯酰胺凝胶电泳:6~10%聚丙烯酰胺凝胶电泳分离效果比琼脂糖好,条带比较集中,可用于科研及检测分析。

酶切分析:根据PCR产物中限制性内切酶的位点,用相应的酶切、电泳分离后,获得符合理论的片段,此法既能进行产物的鉴定,又能对靶基因分型,还能进行变异性研究。

分子杂交:分子杂交是检测PCR产物特异性的有力证据,也是检测PCR 产物碱基突变的有效方法。

Southern印迹杂交: 在两引物之间另合成一条寡核苷酸链(内部寡核苷酸)标记后做探针,与PCR产物杂交。此法既可作特异性鉴定,又可以提高检测PCR产物的灵敏度,还可知其分子量及条带形状,主要用于科研。

斑点杂交: 将PCR产物点在硝酸纤维素膜或尼膜薄膜上,再用内部寡核苷酸探针杂交,观察有无着色斑点,主要用于PCR产物特异性鉴定及变异分析。

关于线粒体在不同显微镜中的颜色

首先要清楚DNA和RNA的区别,然后依此来设计实验

RNA与DNA最重要的区别一是RNA只有一条链,二是它的碱基组成与DNA的不同,RNA没有碱基T(胸腺嘧啶),而有碱基U(尿嘧啶).所以导致他们有以下性质上的不同.

1.两性解离:DNA无,只有酸解离,碱基被屏蔽(在分子内部形成了H键).RNA有,有PI.

2.粘度大:DNA;RNA,粘度由分子长度/直径决定,DNA为线状分子,RNA为线团.

3.碱的作用:DNA耐碱RNA易被碱水解.

4.显色反应:

鉴别DNA和RNA+浓HCl RNA ------→ 绿色化合物

DNA ------→ 蓝紫色化合物苔黑酚

二苯胺啡啶溴红(荧光染料)和溴嘧啶都可对DNA染色,原理是卡在分子中,DNA的离心和电泳显色可用它们.

DNA和RNA的鉴别染色

利用吖啶橙的变色特性可鉴别DNA和RNA.吖啶橙作为一种荧光染料已被用于染色固定,非固定细胞核酸,或作溶酶体的一种标记.观察亡细胞荧光变色性变化以及区别分裂细胞和静止细胞群体.虽然测定DNA和RNA含量时较难获得好的重复性结果,但该方法已被许多实验室广泛采用.

5.溶解性:都溶于水而不溶于乙醇,因此,常用乙醇来沉淀溶液中的DNA和RNA.DNA溶于苯酚而RNA不溶,故可用苯酚来沉淀RNA.

6.紫外吸收:核酸的λm=260nm,碱基展开程度越大,紫外吸收就越厉害.当A=1时,DNA:50ug/ml,RNA和单链DNA:40ug/ml,寡核苷酸:20ug/ml.用A260/A280还可来表示核酸的纯度.

7.沉降速度:对于拓扑异构体(核苷酸数目相同的核酸),其沉降速度从达到小依次为:RNA ; 超螺旋DNA > 解链环状DNA ; 松弛环状DNA ; 线形DNA也就是在离心管中最上层是线形DNA,最下面是RNA.

8.电泳:核苷酸、核酸均可以进行电泳,泳动速度主要由分子大小来决定,因此,电泳是测定核酸分子量的好方法.

9.DNA分子量测定最直接的方法:用适当浓度的EB(溴嘧啶)染色DNA,可以将其他形式的DNA变成线形DNA,用电镜测出其长度,按B-DNA模型算出bp数,根据核苷酸的平均分子量就可计算出DNA的分子量.

怎么确定获得的叶绿体沉淀中还混有细胞核

光镜无法分辨线粒体(光镜下看不到),同时线粒体不含有天然荧光分子如叶绿素,所以荧光显微镜也无法看到,都是透明的。你看不到在哪里。

吖啶橙能使DNA和RNA都染色,显示不同的荧光。DNA呈绿色,RNA呈红色。因为线粒体中含有DNA,所以在荧光镜下呈绿色。但是颜色不深,因为线粒体中DNA含量不高。

吖啶橙染色怎么用于细胞自噬

1、首先在叶绿体沉淀中加入吖啶橙染色后,叶绿体可发出桔红色荧光,而其中混有的细胞核则发绿色荧色。

2、其次当叶绿体沉淀的重量超过制定标准时,就证明叶绿体沉淀中有细胞核。

3、最后通过显微镜查看叶绿体沉淀即可。

我想详细了解一下。DNA和RNA的关系,他们的相同点和不同点什么,他们分别的作用和各自的形成。谢谢

细胞自噬预实验

化学染色法

1、 试验目的

通过化学染料吖啶橙(acridine orange,AO)染色木犀草素处理后的HepG2细胞判断木犀草素是否诱导HepG2细胞发生自噬。

2、 试验原理

3,6-(二甲胺基)吖啶盐酸盐,分子式C17H19N3 · HCl · ZnCl2, 分子量438.12g/mol,是一种荧光色素,其检测激发滤光片波长488nm,阻断滤光片波长515nm。它与细胞中DNA和RNA结合量存在差别,可发出不同颜色的荧光,与DNA结合量少发绿色荧光,与RNA结合量多发桔**或桔红色荧光。该染料具有膜通透性,能透过细胞膜,使核DNA和RNA染色。AO也可以渗透进入酸性细胞器,例如自噬溶酶体,发生自噬的细胞经吖啶橙染色,在荧光显微镜下可观察到红**点状体,称为酸性小体,当PH值较低的时候,AO发出红色荧光,且强度与酸性程度相关。所以在AO标记的细胞中,酸性囊泡细胞器结构可以通过荧光显微镜下观察到。

核酸电泳染色剂有哪些

构成DNA分子的基本单位是脱氧核苷酸,许许多多脱氧核苷酸通过一定的化学键连接起来形成脱氧核苷酸链,每个DNA分子是由两条脱氧核苷酸链组成。DNA分子结构的特点是:①DNA分子的基本骨架是磷酸和脱氧核糖交替排列的两条主链;②两条主链是平行但反向,盘旋成的规则的双螺旋结构,一般是右手螺旋,排列于DNA分子的外侧;③两条链之间是通过碱基配对连接在一起,碱基与碱基间是通过氢键配对在一起的

基本概念

转录是在原核和真核细胞中以DNA为模板合成RNA的过程。

在原核和真核生物中,转录过程是相似的。包括DNA变性,RNA聚合酶结合在单链DNA上以5′→3′方向合成RNA分子。双链中只有一条链作为转录模板,合成单链RNA分子。启动子和终止子序列决定转录的起始和终止。

在E.coli中RNA多聚酶转录各种RNA(mRNA,tRNA和rRNA)。在真核细胞中有三类不同的RNA多聚酶,它们的功能不同。RNA pol Ⅰ转录4种rRNA中的3种;RNA pol Ⅱ转录mRNA和一些snRNA;RNAⅢ转录第四种rRNA,tRNA以及其余的snRNA。

3种真核生物的RNA pol,不像E.coli RNA pol,没有一个直接地和启动子区结合,而是通过转录起始因子的介导来起始RNA的合成。对于每一种RNA多聚酶来说,转录因子是特异的,它可以识别启动子的特殊序列。

蛋白质编码基因的启动子位于转录起始位点的上游,由不同组合的启动原件所构成。特异的转录因子和调节因子结合在这些原件上,促进RNA pol Ⅱ转录起始。增强子离启动子较远,它可被调节因子识别结合,具有促进基因转录的功能。

由RNA pol Ⅲ转录的启动子,位于下游,在其基因编码序列内部。这种启动子,根据所转录的RNA的种类,由不同的功能区组合而构成。转录因子识别这些功能区,促进RNA聚合酶转录起始。

18S,5.8S和28S rRNA作为一个转录单位一道转录,产生前体RNA分子。大部分真核生物的18S,5-8S和28S rRNA都是以串联重复排列,每个重复单位被不转录的间隔序列(nontranscribed specer,NTs)所分隔。转录单位的启动子位于NTS中,其功能是和特异的转录因子相结合,促进RNA pol Ⅰ的转录起始。

从孟德尔定律问世以后,人们就知道了生物的各种性状是由基因控制的。一基因一酶学说的建立进一步地明确了基因是以酶的形式通过控制生化反应链来控制的。酶或蛋白和基因又是什么样的关系呢?也就是说遗传信息怎样传递,怎样表达成性状呢?就在Watson和Crick建立DNA双螺旋模型后的第三年,1957年Crick提出了中心法测(central dogma),指出了遗传信息的传递方向:

DNA → RNA→蛋白质

DNA RNA → 蛋白质

(1970年H.Temin和D.Baltimore发现了反转录酶后,Crick对中心法测又作了部分修改:

也就是说由DNA通过转录将遗传信息传递给RNA,RNA通过翻译把信息传递给蛋白(图12-1)。通过这种单向的传递,遗传信息通过蛋白质的不同形式,如酶,结构蛋白,运载蛋白,调节蛋白等表达成一种性状。

第一节 信使的发现

储存在DNA分子中的这种遗传信息能在复制中产生更多的拷贝,并翻译成蛋白质。DNA的功能构成了信息的流动,遗传信息如何转变成蛋白质呢?转录就是其中的重要的一环。基因表达时以DNA的一条链为模板合成RNA,这一过程就是转录(transcription)。催化合成RNA的酶叫做RNA聚合酶(RNA polymerase)。RNA和DNA结构相似,所不同之处在于:(1)RNA一般以单链形式存在;(2)RNA中的核糖其C′-2不脱氧的;(3)尿苷(U)取代了DNA中的胸苷。细胞中的RNA分成三种:mRNA(信使RNA),tRNA(转运RNA)和rRNA(核糖体RNA)。它们的功能各不相同。mRNA是合成蛋白质的模板,tRNA是转运特异氨基酸的运载工具,rRNA是合成蛋白质的装置。mRNA的碱基序列,决定着蛋白质装配时氨基酸的序列。

1955年Brachet用洋葱根尖和变形虫进行了实验;若加入RNA酶降解细胞中的RNA,则蛋白质合成就停止,若再加入从酵母中提取的RNA,则又可以重新合成一些蛋白质,这就表明,蛋白质的合成是依赖于RNA。

同年Goldstein和Plaut用同位素标记变形虫(Amoeba proteus)RNA前体,发现标记的RNA都在核内,表明RNA是在核内合成的。在标记追踪(pulse-chase)实验中,用短脉冲标记RNA前体,然后将细胞核转移到未标记的变形虫中。经过一段时间发现被标记的RNA分子已在细胞质中,这就表明RNA在核中合成,然后转移到细胞质内,而蛋白质就在细胞质中合成,因此RNA就成为在DNA和蛋白质之间传递信息的信使的最佳候选者。

1956年Elliot Volkin和 Lawrence Astrachan作了一项很有意思的观察:当E.coli被T2感染,迅速停止了RNA的合成,但噬菌的RNA却开始迅速合成。用同位素脉冲一追踪标记表明噬菌的RNA在很短的时间内就进行合成,但很快又消失了,表明RNA的半衰期是很短的。由于这种新合成的RNA的碱基比和T2的DNA碱基比相似,而和细菌的碱基比不同,所以可以确定新合成的RNA是T2的RNA。由于T2感染细菌时注入的是DNA,而在细胞里合成的是RNA,可见DNA是合成RNA的模板。最令人信服的证据来自DNA-RNA的杂交实验。Hall.B.D和Spiegeman,S,将T2噬菌体感染E.coli后立即产生的RNA分离出来,分别与T2和E.coli的DNA进行分子杂交,结果发现这种RNA只能和T2的DNA杂交形成“”链,而不能和E.coli的DNA进行杂交。表明T2产生的这种RNA(即mRNA)至少和T2的DNA中的一条链是互补的。

Brenner,s. Jacob,F.和Meselson(1961)进行了一系列的的实验(图12-2),他们将E.coli培养在15N/13C的培养基中,因此合成的RNA和蛋白都被“重”同位素所标记。也就是说凡是“重”的核糖体,RNA和蛋白都是细菌的,然后用T2感染E.coli,细菌的RNA停止合成,而开始合成T2的RNA此时用普通的“轻”培养基(14N/12C),但分别以32P来标记新合成的T2 RNA,以35S标记新合成的T2蛋白,因此任何重新合成的核糖体,RNA,及蛋白都是“轻”的但带但有放射性同位素。经培养一段时间后破碎细胞,加入过量的轻的核糖体作对照,进行密度梯度离心,结果“轻”的核糖体上不具有放射性,“重”的核糖体上具有32P和35S,表明(1)T2未合成核糖体,“轻”核糖体却是后加放的。(2)T2翻译时是借用了细菌原来合成的核糖体,所以核糖体并无特异性,核糖体上结合的mRNA,其序列的特异性才是指导合成蛋白质的遗传信息,从而提出了mRNA作为“信使”的证据。因此他们将这种能把遗传信息从DNA传递到蛋白质上的物质称为“信使”。他们预言(1)这种“信使”应是一个多核苷酸;(2)②其平均分子量不小于5?105(假定密码比是3),足以携带一个基因的遗传信息;(3)它们至少是暂时连在核糖体上;(4)其碱基组成反映了DNA的序列;(5)它们能高速更新。Volkin和Astrachan发现高速更新的RNA似乎完全符合以上条件。Jacob和Monod将它定名为信使RNA(Messenger RNA)或mRNA

电泳后,核酸需经染色才能显色出带型,常用以下核酸染色剂:

1、溴化乙锭(ethidium bromide, EB)

最常用的核酸荧光染料,可嵌入核酸双链的配对碱基之间,在紫外线激发下,发出桔红色荧光。 EB-DNA复合物中的EB发出的荧光,比游离的凝胶中的EB发出的荧光强度大10倍,因此无需洗净背景即可清楚观察核酸带型。若EB背景太深,可将凝胶 浸泡于1mmol/LMgSO4中1h或10mmol/L MgCl2中5min,使非结合的EB褪色,这 样可检查到10ng的DNA样品,EB也可用于检测单链DNA或RNA,但其对单链核酸的亲和力相对较小,荧光产率也相对较低。

在凝胶或电泳缓冲液中加入终浓度为0.5μg/ml的EB,染色可在电泳过程中进行,能随时观察核酸的迁移情况。但EB带正电荷,嵌入碱基后增加了 核酸分子的刚性,使迁移率减慢,故不宜用于测定核酸分子量的大小,这时应在电泳后将凝胶浸入0.5μg/ml的EB水溶液中10min进行染色。EB见光 易分解,应于4℃避光保存,

2、吖啶橙(acridine orange, AO):

吖啶橙可嵌入双链核酸碱基对之间,在254nm紫外线激发下发出530nm的绿色荧光;还通过静电与单链核酸的磷酸基结合,在254nm紫外线激发 下产生640nm的红色荧光。因此可区分单链和双链核酸,灵敏度分别为0.1μg和0.05μg。但吖啶橙的染色操作要求严格,应在 22℃,0.01mol/L磷酸钠缓冲液(pH7.0)中避光浸泡30min,然后在搪瓷盘中用该缓冲剂4℃脱色过夜或22℃脱色1~2小时。

3、银(Ag+)试剂:

Ag+与核酸形成稳定复合物,然后用甲醛使Ag+还原成银颗粒。AgNO3等试剂可使聚丙烯酰胺凝胶上的单链,双链DNA及 RNA都染成黑褐色。银染法的灵敏度比EB染色高200倍左右,比亚甲蓝染色高100~1000倍,在小于0.5mm厚的凝胶中,能检测出0.5ng的 RNA,其缺点是专一性不强,能与蛋白质,去污剂反应也产生褐色,而且对DNA的染色定量不准确。银与DNA稳定结合,对DNA有破坏作用,不适于DNA 片段回收的制备。

4、亚甲蓝(methylene blue)

可将RNA染成蓝色,但灵敏度不高,而且操作时间长。染色过程:胶浸泡于0.02%的亚甲蓝,10mmol/L Tris-Ac(pH8.3),4℃放置1~2h,用净水洗5~8h(反复换水),带型肉眼可见,最低检测量为 250ng。