原料药与制剂药品的一般杂质检查有何异同-原料药与制剂中已知杂质的名称

回收率包括绝对回收率和相对回收率。绝对回收率考察的是经过样品处理后能用于分析的药物的比例。因为不论是生物基质还是制剂辅料中的药物,经过样品处理都有一定的损失。

相对回收率严格来说有两种。一种是回收试验法,另一种是加样回收试验法。前者是在空白基质中加入药品,标准曲线也是同此,这种测定用得较多,但有标准曲线重复测定的嫌疑。第二种是在已知浓度样品中加入药物,来和标准曲线比,标准曲线也是在基质中加药物。

基本介绍 中文名 :回收率 外文名 :recovery? 包括 :绝对回收率和相对回收率 套用方面 :原料药制剂 分类 :名词 术语解释,原料药制剂,主要套用,调整改进, 术语解释 绝对回收率因为不论是生物基质还是制剂辅料中的药物,经过样品处理都有一定的损失。作为一个分析方法,绝对回收率一般要求大于50%才行。它是在空白基质中定量加入药物,经处理后与标准品的比值。标准品为流动相直接稀释而来,而不是同样品一样处理。若一样,只是不加基质来处理,可能会有很多影响因素被此禁止掉。如全部转移有机相时只转移了98%等。也就因此失去了绝对回收率的考察初衷。 相对回收率主要考察准确度。准确度系指用该方法测定的结果与真实值或认可的参考值之间接近的程度。有时也称真实度。 一定的准确度为定量测定的必要条件,因此涉及到定量测定的检测项目均需要验证准确度,如含量测定、杂质定量试验等。 准确度应在规定的范围内建立,对于制剂一般以回收率试验来进行验证。试验设计需考虑在规定范围内,制备3个不同浓度的试样,各测定3次,即测定9次,报告已知加入量的回收率(%)或测定结果平均值与真实值之差及其可信限。 原料药制剂 1.含量测定 原料药可用已知纯度的对照品或符合要求的原料药进行测定,或用本法所得结果与已建立准确度的另一方法测定的结果进行比较。 制剂可用含已知量被测物的各组分混合物进行测定。如不能得到制剂的全部组分,可向制剂中加入已知量的被测物进行测定,必要时,与另一个已建立准确度的方法比较结果。一般制剂的含量测定的回收率是向辅料中加入处方量80%、100%、120%已知含量的主药,按含量测定的方法测定。溶出度测定方法的回收率按处方量50%、80%、100%加入主药进行测定。 2.杂质定量试验 杂质的定量试验可向原料药或制剂中加入已知量杂质进行测定。如果不能得到杂质,可用本法测定结果与另一成熟的方法进行比较,如药典方法或经过验证的方法。 如不能测得杂质的相对回响因子,可线上测定杂质的相关数据,如采用二极体阵列检测器测定紫外光谱,当杂质的光谱与主成分的光谱相似,则可采用原料药的回响因子近似计算杂质含量(自身对照法)。并应明确单个杂质和杂质总量相当于主成分的重量比(%)或面积比(%)。 主要套用 气源单位运输液化天然气是使用槽车进行运输的,槽车在气源厂出车前进行称重,此为来货重量 ;而槽车到达天然气企业并完成卸车后再进行称重,此为实收重量,液化天然气简称LNG,其主要特性为-162℃,为液态,而随着温度的上升,可转换为气态 ;反之,气态的天然气随温度的下降,可转换为液态。而气液转换的体积比约为600:1,即1m 3 的液化天然气可转化为600m 3 的气态天然气,因此气液两相可相互转换。根据液化天然气的物化特性可知,当温度逐渐升高时,-162℃的液化天然气会转换为气态形式,同理当温度逐渐降低时,气态形式的天然气也会转换为液态形式,因此要将槽车内剩余的气态形式天然气转化为液态,并将其输送至储罐,这样就可以将槽车内剩余的天然气尽可能地卸车完全,避免亏损,所以将气态形式转换为液态形式最关键的就是控制并降低气态天然气的温度,使车内气态形式天然气尽可能转化为液态形式。 调整改进 根据站内的工艺设备以及管道情况,与储罐连线的共3条管道,一条为气相管道,一条为槽车输送天然气至储罐进液的管道,还有一条为储罐输出天然气的出液管道 ;按照储罐的内部结构,槽车输送天然气的进液管道是从储罐的顶部进入,而储罐输送液化天然气的出液管道是从储罐底部输出,因此,为可将槽车内的天然气与储罐内的液化天然气直接相通,在进液管与出液管之间增加一处旁通管道及阀门,为此可根据操作情况需要,适时开启旁通阀门,即可将出液管与进液管相通。旁通管道及阀门增加后,工艺操作步骤也相对进行调整,调整如下 : 1、改进前 (1)槽车开始卸车时,开启储罐进液管道阀门和槽车出液阀门,将槽车内的液化天然气输送至储罐内。 (2)卸车末段时,槽车内压力缓慢降低,达到与槽车内基本一致时(约为0.4 Mpa),卸车完成。 2、改进后 (1)槽车开始卸车时,开启储罐进液管道阀门和槽车出液阀门,将槽车内的液化天然气输送至储罐内。 (2)卸车末段时,槽车内压力缓慢降低,达到与槽车内基本一致时,关闭储罐进液阀门,同时开启旁通管道阀门以及储罐出液阀门,使槽车输送的天然气从储罐底部进入,将槽车剩余的气态天然气与储罐内液化天然气直接接触,从而达到气态转换液态的目的。 (3)直至槽车内压力降至0.2 Mpa时(按要求槽车内必须保持一点压力),关闭槽车与储罐阀门,卸车完成。改进工艺操作后,通过几个月的数据统计,回收率明显提高。

设计安全有效化学品的外部效应原则和内部效应原则的主要内容有哪些

大概的思路是这样:

假如杂质S是你想要考察的杂质。你需要测定一个样品中中杂质S的含量。或者用在重复性试验中的数据也可以。

然后这个杂质大约规定一个限度,比如说你的质量标准草案中规定,单个未知杂质不得超过0.2%,或者已知杂质S不超过0.2%之类的。

杂质对照品:按照限度浓度配制,0.2%,平行两针。

比如80%样品:

原料药:样品100%(这个就按照你有关物质供试品浓度配制)+杂质对照品80%,平行配置3份;

制剂:辅料100%+原料药100%+杂质80%,平行配置3份;

杂质对照品是变量,分为80%/100%/120%各三份。

计算结果里面有一部分是样品(原料中)引入的,把这一部分扣除掉,之后的数值作为计算值,然后计算值/加入值就是回收率了。

原料药中的基因毒性杂质在制剂中控不控制

化学药物质量控制分析方法验证技术指导原则

一、概述

保证药品安全、有效、质量可控是药品研发和评价应遵循的基本原则,其中,对药品进行质量控制是保证药品安全有效的基础和前提。为达到控制质量的目的,需要多角度、多层面来控制药品质量,也就是说要对药物进行多个项目测试,来全面考察药品质量。一般地,每一测试项目可选用不同的分析方法,为使测试结果准确、可靠,必须对所采用的分析方法的科学性、准确性和可行性进行验证,以充分表明分析方法符合测试项目的要求,这就是通常所说的对方法进行验证。 方法验证的目的是判断采用的分析方法是否科学、合理,是否能有效控制药品的内在质量。

从本质上讲,方法验证就是根据检测项目的要求,预先设置一定的验证内容,并通过设计合理的试验来验证所采用的分析方法能否符合检测项目的要求。

方法验证在分析方法建立过程中具有重要的作用,并成为质量研究和质量控制的组成部分。

只有经过验证的分析方法才能用于控制药品质量,因此方法验证是制订质量标准的基础。方法验证是药物研究过程中的重要内容。

二、方法验证的一般原则

原则上每个检测项目采用的分析方法,均需要进行方法验证。

方法验证的内容应根据检测项目的要求,结合所采用分析方法的特点确定。

同一分析方法用于不同的检测项目会有不同的验证要求。例如,采用高效液相色谱法用于制剂的鉴别和杂质定量试验应进行不同要求的方法验证,前者重点要求验证专属性,而后者重点要求验证专属性、准确度、定量限。

三、方法验证涉及的三个主要方面

(一)需要验证的检测项目

鉴别、

杂质检查

定量测定(含量测定、溶出度、释放度等)、

其他特定检测项目 (分子量及分子量分布、生物活性等)

鉴别的目的在于判定被分析物是目标化合物,而非其它物质,用于鉴别的分析方法要求具有较强的专属性。

杂质检查主要用于控制主成分以外的杂质,如有机杂质、无机杂质等。杂质检查可分为限度试验和定量试验两种情况。用于限度试验的分析方法验证侧重专属性和检测限。

用于定量试验的分析方法验证强调专属性、准确度和定量限。

定量测定包括含量测定、制剂的溶出度测定等,由于此类项目对准确性要求较高,故所采用的分析方法要求具有一定的专属性、准确度和线性。

其他特定检测项目包括粒径分布、旋光度、分子量分布、生物活性等,由于这些检测项目的要求与鉴别、杂质检查、定量测定等有所不同,对于这些项目的分析方法验证应有不同的要求。

(二)分析方法

分析方法是为完成上述各检测项目而设定和建立的测试方法。

分析方法原理

仪器及仪器参数

试剂

系统适用性试验

供试品溶液制备

对照品溶液制备

测定

计算及测试结果的报告等

测试方法

化学分析方法

仪器分析方法

这些方法各有特点,同一测试方法可用于不同的检测项目,但验证内容可不相

(三)验证内容

验证内容:

方法的专属性

线性

范围

准确度

精密度

检测限

定量限

耐用性

系统适用性等

四、方法验证的具体内容

(一)专属性

专属性系指在其他成分(如杂质、降解物、辅料等)可能存在下,采用的分析方法能够正确鉴定、检出被分析物质的特性。

通常,鉴别、杂质检查、含量测定方法中均应考察其专属性。如采用的方法不够专属,应采用多个方法予以补充。

1、鉴别反应

鉴别试验应确证被分析物符合其特征。

专属性试验要求证明能与可能共存的物质或结构相似化合物区分,需确证含被分析物的供试品呈正反应,而不含被测成分的阴性对照呈负反应,结构相似或组分中的有关化合物也应呈负反应。

2、杂质检查

作为纯度检查,所采用的分析方法应确保可检出被分析物中杂质的含量,如有关物质、重金属、有机溶剂等。因此杂质检查要求分析方法有一定的专属性。

在杂质可获得的情况下,可向供试品中加入一定量的杂质,证明杂质与共存物质能得到分离和检出,并具适当的准确度与精密度。

在杂质或降解产物不能获得的情况下,专属性可通过与另一种已证明合理但分离或检测原理不同、或具较强分辨能力的方法进行结果比较来确定。或将供试品用强光照射,高温,高湿,酸、碱水解及氧化的方法进行破坏(制剂应考虑辅料的影响),比较破坏前后检出的杂质个数和量。必要时可采用二极管阵列检测和质谱检测,进行色谱峰纯度检查。

3、含量测定

含量测定目的是得到供试品中被分析物的含量或效价的准确结果。 在杂质可获得的情况下,对于主成分含量测定可在供试品中加入杂质或辅料,考察测定结果是否受干扰,并与未加杂质和辅料的供试品比较测定结果。

在杂质或降解产物不能获得的情况下,可采用另一个经验证了的或药典方法进行比较,对比两种方法测定的结果。

也可采用破坏性试验(强光照射,高温,高湿,酸、碱水解及氧化),得到含有杂质或降解产物的试样,用两种方法进行含量测定,比较测定结果。

必要时进行色谱峰纯度检查,证明含量测定成分的色谱峰中不包含其他成分。

(二)线性

线性系指在设计的测定范围内,检测结果与供试品中被分析物的浓度(量)直接呈线性关系的程度。 线性是定量测定的基础,涉及定量测定的项目,如杂质定量试验和含量测定均需要验证线性。 应在设计的测定范围内测定线性关系。可用一贮备液经精密稀释,或分别精密称样,制备一系列被测物质浓度系列进行测定,至少制备5个浓度。以测得的响应信号作为被测物浓度的函数作图,观察是否呈线性,用最小二乘法进行线性回归。 必要时,响应信号可经数学转换,再进行线性回归计算,并说明依据。

(三)范围

范围系指能够达到一定的准确度、精密度和线性,测试方法适用的试样中被分析物高低限浓度或量的区间。 范围是规定值,在试验研究开始前应确定验证的范围和试验方法。

可以采用符合要求的原料药配制成不同的浓度,按照相应的测定方法进行试验。 范围通常用与分析方法的测试结果相同的单位(如百分浓度)表达。涉及到定量测定的检测项目均需要对范围进行验证,如含量测定、含量均匀度、溶出度或释放度、杂质定量试验等。

范围应根据剂型和(或)检测项目的要求确定。

1、含量测定 范围应为测试浓度的80%~100%或更宽。

2、制剂含量均匀度 范围应为测试浓度的70%~130%。根据剂型特点,如气雾剂、喷雾剂,必要时,范围可适当放宽。

3、溶出度或释放度 对于溶出度,范围应为限度的±20%;如规定限度范围,则应为下限的-20%至上限的+20%。 对于释放度,如规定限度范围为,从1小时后为20%至24小时后为90%,则验证范围应为0~110%。

4、杂质 杂质测定时,范围应根据初步实测结果,拟订出规定限度的±20%。如果含量测定与杂质检查同时测定,用面积归一化法,则线性范围应为杂质规定限度的-20%至含量限度(或上限)的+20%。

(四)准确度

准确度系指用该方法测定的结果与真实值或认可的参考值之间接近的程度。有时也称真实度。 一定的准确度为定量测定的必要条件,因此涉及到定量测定的检测项目均需要验证准确度,如含量测定、杂质定量试验等。准确度应在规定的范围内建立,对于制剂一般以回收率试验来进行验证。试验设计需考虑在规定范围内,制备3个不同浓度的试样,各测定3次,即测定9次,报告已知加入量的回收率(%)或测定结果平均值与真实值之差及其可信限。

1、含量测定

原料药可用已知纯度的对照品或符合要求的原料药进行测定,或用本法所得结果与已建立准确度的另一方法测定的结果进行比较。 制剂可用含已知量被测物的各组分混合物进行测定。如不能得到制剂的全部组分,可向制剂中加入已知量的被测物进行测定,必要时,与另一个已建立准确度的方法比较结果。

2、杂质定量试验

杂质的定量试验可向原料药或制剂中加入已知量杂质进行测定。如果不能得到杂质,可用本法测定结果与另一成熟的方法进行比较,如药典方法或经过验证的方法。 如不能测得杂质的相对响应因子,可在线测定杂质的相关数据,如采用二极管阵列检测器测定紫外光谱,当杂质的光谱与主成分的光谱相似,则可采用原料药的响应因子近似计算杂质含量(自身对照法)。并应明确单个杂质和杂质总量相当于主成分的重量比(%)或面积比(%)。

(五)精密度

精密度系指在规定的测试条件下,同一均质供试品,经多次取样进行一系列检测所得结果之间的接近程度(离散程度)。

精密度一般用偏差、标准偏差或相对标准偏差表示。取样测定次数应至少6次。

精密度可以从三个层次考察:

重复性

中间精密度

重现性

1、重复性

重复性系指在同样的操作条件下,在较短时间间隔内,由同一分析人员测定所得结果的精密度。 重复性测定可在规定范围内,至少用9次测定结果进行评价,如制备3个不同浓度的试样,各测定3次,或100%的浓度水平,用至少测定6次的结果进行评价。

2、中间精密度

中间精密度系指在同一实验室,由于实验室内部条件改变,如时间、分析人员、仪器设备、测定结果的精密度。 验证设计方案中的变动因素一般为日期、分析人员、设备。

3、重现性

指不同实验室之间不同分析人员测定结果的精密度。 当分析方法将被法定标准采用时,应进行重现性试验。

(六)检测限

检测限系指试样中的被分析物能够被检测到的最低量,但不一定要准确定量。 该验证指标的意义在于考察方法是否具备灵敏的检测能力。因此对杂质限度试验,需证明方法具有足够低的检测限,以保证检出需控制的杂质。

六、对方法验证的评价

(一)有关方法验证评价的一般考虑

总体上,方法验证应围绕验证目的和一般原则来进行,方法验证内容的选择和试验设计方案应系统、合理,验证过程应规范严谨。 并非每个检测项目的分析方法都需进行所有内容的验证,但同时也要注意验证内容应充分,足以证明采用的分析方法的合理性。如杂质限度试验一般需要验证专属性和检测限,而对于精密度、线性、定量限等涉及定量测定的项目,则一般不需要进行验证。

(二)方法验证的整体性和系统性

方法验证内容之间相互关联,是一个整体。因此不论从研发角度还是评价角度,方法验证均注重整体性和系统性。 例如,对于鉴别项目所需要的专属性,一般一种分析方法不太可能完全鉴别被分析物,此时采用两种或两种以上分析方法可加强鉴别项目的整体专属性。在方法验证内容之间也存在较多的关联性,可以相互补充。如原料药含量测定采用容量分析法时,由于方法本身原因,专属性略差,但假如在杂质检测时采用了专属性较强的色谱法,则一般认为整个检测方法也具有较强的专属性。

总之,由于实际情况较复杂,在方法验证过程中,不提倡教条地去进行方法验证。

此外,越来越多的新方法不断被用于质量控制中,对于这些方法如何进行验证需要具体情况具体分析,而不能照搬指导原则。

原料药中的基因毒性杂质在制剂中控不控制

1什么是基因毒性杂质

基因毒性杂质(或遗传毒性杂质,Genotoxic Impurity ,GTI)是指化合物本身直接或间接损伤细胞DNA,产生基因突变或体内诱变,具有致癌可能或者倾向。潜在基因毒性的杂质(Potential Genotoxic Impurity ,PGI)从结构上看类似基因毒性杂质,有警示性,但未经实验证明的黄曲霉素类、亚硝胺化合物、甲基磺酸酯等化合物均为常见的基因毒性杂质,许多化疗药物也具有一定的基因毒性,它们的不良反应是由化疗药物对正常细胞的基因毒性所致,如顺铂、卡铂、氟尿嘧啶等。

2为何着重研究基因毒性杂质

基因毒性物质特点是在很低浓度时即可造成人体遗传物质的损伤,进而导致基因突变并可能促使肿瘤发生。因其毒性较强,对用药的安全性产生了强烈的威胁,近年来也越来越多的出现因为在已上市药品中发现痕量的基因毒性杂质残留而发生大范围的医疗事故,被FDA强行召回的案例,给药厂造成了巨大的经济损失。例如某知名国际制药巨头在欧洲市场推出的HIV蛋白酶抑制剂维拉赛特锭(Viracept, mesylate),2007 年7月,EMA暂停了它在欧洲的所有市场活动,因为在其产品中发现甲基磺酸乙酯超标,甲基磺酸乙酯是一种经典的基因毒性杂质,该企业为此付出了巨大的代价,先内部调查残留超标的原因,因在仪器设备清洗时乙醇未被完全清除而残留下来,与甲基磺酸反应形成甲基磺酸乙酯。在被要求解决污染问题后还被要求做毒性研究,以更好的评估对患者的风险。同时有多达25000 名患者暴露于这个已知的遗传毒性。直到解决了这所有问题后 EMA才恢复了它在欧洲的市场授权。

近年来各国的法规机构如ICH、FDA、EMA等都对基因毒性杂质有了更明确的要求,越来越多的药企在新药研发过程中就着重关注基因毒性杂质的控制和检测。

3哪些化合物是基因毒性杂质

杂质的结构多种多样,对于绝大多数的杂质而言,往往没有充分的毒性或致癌研究数据,因而难以对其进行归类。在缺乏安全性数据支持的情况下,这些法规和指导原则采用“警示结构”作为区分普通杂质和基因毒性杂质的标志。对于含有警示结构的杂质,应当进行(Q)SAR预测和体内外遗传毒性和致癌性研究,或者将杂质水平控制在毒理学关注阈(TTC)之下。

目前,一般将致癌物分成两大类:一类是遗传毒性致癌物,通过化学键合直接破坏遗传物质产生致癌性, 大多数的化学致癌物具有遗传毒性; 第二类是非遗传毒性致癌物, 通常不与发生化学键合作用, 不对产生直接破坏, 而是通过遗传物质外的间接机制引起致癌作用( 如促进细胞过度增殖等)。

将多个文献中的警示结构汇总于(见原文PDF)。关于基因杂质警示结果的具体详细信息另外可参考欧盟发布的警示结构《Development of structure alerts for the in vivo micronucleus assay in rodents》。或进入 The Carcinogenic Potency Database (CPDB),里面有 1547 种致癌物质的列表,结构式,CAS 号,作用部位,TTC 值等一系列信息。应当注意, 含有警示结构并不意味着该杂质一定具有遗传毒性, 而确认有遗传毒性的物质也不一定会产生致癌作用。杂质的理化性质和其他结构特点(如相对分子质量、亲水性、分子对称性 / 空间位阻、反应活性以及生物代谢速率等)会对其毒性产生抑制或调节作用。警示结构的重要性在于它提示了可能存在的遗传毒性和致癌性, 为进一步的杂质安全性评价和控制策略的选择指明方向。

4对基因毒性杂质的法规要求及限度

最初,ICH相继推出的原料药杂质研究指导原则Q3A(R2)、制剂杂质研究指导原则 Q3B(R2),在这些指导原则中提及“对于能够产生强的药理活性或毒性的潜在杂质,即使其含量低于0.1%,仍然建议进行结构鉴定研究”。在之后的修订版中,还进一步明确“要关注原料药中的潜在遗传毒性杂质”,以及“对于毒性非常强的杂质,可能需要制定更低的限度”,但是其中并未明确阐述遗传毒性杂质的研究和控制问题,也未提出具体的研究原则、控制策略和限度要求。

在EMA(欧洲药物评审组织)推出《遗传毒性杂质限度指导原则》, 引入了可接受风险的摄入量,即毒性物质限量,或称毒理学关注门槛(TTC,Threshold of Toxicological Concern)这个概念。设置了限度值 TTC(1.5 μg/day),即相当于每天摄入1.5 μg的基因毒性杂质,被认为对于大多数药品来说是可以接受的风险(一生中致癌的风险小于十万分之一)。按照这个阈值,可以根据预期的每日摄入量计算出活物中可接受的杂质水平。需要指出的是TTC是一个风险管理工具,它采用的是概率的方法。假如有一个基因毒性杂质,并且我们对它的毒性大小不太了解,如果它的每日摄