吖啶标记-吖啶基团

(1) 友谊是一杯愈陈愈香的酒,其中酒 溶液 的分子就是你和我,一种亲和力将我们结合在一起。友谊是一棵树,它的成长需要阳光、热情与真挚,也同样需要土壤、朴实和坦诚。

(2) 友谊像一杯愈陈愈香的酒,其中酒 溶液 的分子就是你和我,友谊像一棵树,它的成长需要阳光热情与真挚,也同样需要土壤朴实和坦诚。

(3) 虽然在时光的 溶液 里被浸泡得失去了应该完整无缺的细节,可是却依然留下根深蒂固的某个部分,顽强地存活在心脏里。

(4) 还为那些注意健康饮食者建造了温室,温室内熟菜用 溶液 培养,新鲜绿色食品一年四季络绎不绝。

(5) 通过测定不同树脂的不同浓度丁酮 溶液 的性能,制备出具有最佳综合性能的打印机墨水。

(6) 讨论黄原酸盐对再生丝素纺丝 溶液 可纺性的影响,用扫描电镜对制得的再生丝素初生纤维的表面形态进行观察。

(7) 利用微型反应釜,考察了正己基苯在硝酸镍甲醇 溶液 、硝酸铜甲醇溶液、硝酸镍水溶液、硝酸铜水溶液、硝酸和水催化下的悬浮床加氢裂化反应.

(8) 通常含有氧化锂的盐 溶液 ,吸收制冷剂的蒸气。

(9) 在某些情况下, 溶液 中的溶质可以互相结合。

(10) 溴化锂水 溶液 降膜吸收是目前溴化锂吸收式制冷研究的热点之一.

(11) 本文介绍了用 溶液 沉淀聚合法制备粉状聚丙烯酰胺的方法。

(12) 方法1。实验所用胶原 溶液 为可溶性牛腱胶原,其主要成份为I型胶原。

(13) 川楝子阴性对照 溶液 在相同位置无斑点。

(14) 分离后的 溶液 进行浓缩,分步析出氟化钠、氟化钾和铷铯氟化物。

(15) 测量在 溶液 中化合物的溶解度.

(16) 该 溶液 对织物有明显的除锈退色作用,性能优于普通除锈剂草酸或氟化钠溶液。

(17) 石蕊试纸可用以测试 溶液 是否含酸.

(18) 制备了导电聚苯胺粉末与氯仿萃取的导电聚苯胺 溶液 。

(19) 以碳酸钠 溶液 脱除了丝素外表可引起炎症反应的丝胶成分.

(20) 还原后的锰用硫酸浸取, 溶液 经除杂后,与碳酸铵反应而制成高纯碳酸锰。

(21) UNIFAC模型目前已成为推算非电解质 溶液 中组分活度系数应用最广泛的模型,并且用于工程设计计算。

(22) 用0.1M标准NaOH 溶液 滴定剂,滴定到溶液由红色变为橙色。

(23) 水晶石台面墨渍:将饭粒和洗涤剂调匀,涂在污渍部分搓擦,再用清水漂洗;也可用一份酒精、二份肥皂制的 溶液 反复涂擦,效果也很好。

(24) 表面活性剂铜配合物具有较好的水溶性和表面活性,不但在DMF溶剂中有效催化苯甲醇、安息香的空气氧化反应,而且在稀碱 溶液 中形成的金属胶束也可催化氧化苯甲醇。

(25) 本发明公开了一种烟草保润剂,该烟草保润剂是吡咯烷酮羧酸盐的水 溶液 。

(26) 初步试验表明,扩散渗析可以用来分离回收其中大部分的硫酸,从而降低 溶液 的酸度,减少沉淀产品的碱耗.

(27) 冻干粉剂为白色疏松粉末,无塌陷或萎缩现象,加双蒸水后为白色乳状 溶液 ,再分散性良好。

(28) 板式降膜蒸发器具有蒸水能力大、汽耗低、回水比高等优点,但不宜蒸发有结晶析出的 溶液 。

(29) 乙酸钠是一种在很多移动暖炉内发现的化学物质,如果你准备一瓶饱和 溶液 ,将其倒在籽晶上,乙酸钠就会猛地变成晶体。

(30) 用气相色谱法分析其糖基组成,并将其中葡萄糖和甘露糖基含量较高的组分用氢氧化钡 溶液 进一步分级,得四个不同的多糖组分。

(31) 平衡吸附量随 溶液 浓度的增大而提高。离聚物SPET中磺酸钠基团含量越大,其吸附平衡值也越大。

(32) 以钴标准 溶液 为滴定剂,铂电极为指示电极,甘汞电极作为参比电极,利用电位的突变来指示终点.

(33) 在连续光照条件下, 溶液 中吸附到基底上的量子点会发生光漂白及光谱蓝移现象。

(34) 在水 溶液 体系中,用苯羟乙酸直接与碳酸稀土作用,合成了十四种苯羟乙酸稀土配合物.

(35) 主要用于制糖厂,啤酒厂,酵母厂,酒精厂,以测定各种蔗糖,葡萄糖,乳糖,麦芽糖等 溶液 的浓度。

(36) 重铬酸钾 溶液 的浓度大、游离酸多,动物胶质的不同,也都会加还无光硬化.

(37) 然后过滤混合物,得到的 溶液 即要用的酊剂.

(38) 目的研究盐酸二甲双胍口服 溶液 剂的制备工艺及稳定性。

(39) 在待测的葡萄糖 溶液 中加入萘酚绿作为电子媒介体,制成葡萄糖生物传感器。

(40) 本文采用电解法制备高铁酸盐 溶液 ,制备过程中首次使用了琼脂凝胶作为物理隔膜,这在国内外未有文献报道。

(41) 吸附钼后的吸附剂用氨水反洗,得到的钼酸铵 溶液 ,通过蒸发、浓缩、中和结晶出仲钼酸铵,从而回收其中的钼。

(42) 铝粉放在过氯酸铵的饱和 溶液 中.

(43) 一个清晰的无色 溶液 在二毫升**安瓿和5毫升明确的安瓿.

(44) 采用相转移催化剂,氯代环已烷与二硫化钠 溶液 反应合成了二环已基二硫醚.

(45) 用EDTA标准 溶液 滴定,可测得氧化钇的含量。

(46) 同样采用双极片制作工艺,电解液优选9MKOH 溶液 ,导电材料优选未纯化的碳纳米管.

(47) 酸洗液通常是一种含酸的水 溶液 ,装在敞开的大槽中.

(48) 它们具有经济的定价仪表,特别适合用于苛性碱 溶液 以及液态氯,次氯酸钠和氯气。

(49) 静电推斥使 溶液 中的分子伸长,相临链也互相排斥。因此CMC溶液倾向于高粘度且稳定。

(50) 采用络合萃取法提取稀 溶液 中的丙酸,研究了络合萃取及反萃取的工艺条件.

(51) 这样在电镀后再在硝酸和硝酸铵 溶液 中或在硝酸和铬酸溶液中退除铜镍镀层,由于铬层不受侵蚀,仍能维持不变。

(52) 我们可任选一方便的固定量 溶液 进行研究。

(53) 本文用玻璃丸对800合金传热管进行喷丸,明显地改善了它在高温苛性碱 溶液 中的应力腐蚀性能。

(54) 盐酸 溶液 对环氧胶接接头的破坏作用要比硫酸溶液强。

(55) 乙酰丙酸是配制酱油的特有成分,在硫酸 溶液 中,乙酰丙酸可与香草醛反应而呈现蓝绿色。

(56) 通过滤取获得的生成物或 溶液 ,尤指经土壤渗滤后得到的含有沾染物的溶液。

(57) 配制好的 溶液 应立即使用,并应避光。

(58) 这些 溶液 作用的确切机制尚不清楚,而研究者们相信这些肽类可以与细胞周围的细胞外基质相互作用。

(59) 而亚硫酸系的非氰化物镀金 溶液 ,是近年来最令人注目的镀金技术。

(60) 目的:测定复方红霉素醇 溶液 中的红霉素含量.

(61) 介绍了偏氟乙烯的物性和合成方法,叙述了偏氟乙烯的乳液、悬浮、 溶液 聚合和共聚方法。

(62) 胶态晶体法是利用胶体 溶液 的自组装特性将纳米团簇组装成超晶格,可得到二维或三维有序的超晶格。

(63) 浓时产生二次蒸汽,通过蒸发器上升管送入提取罐作提取的热源和 溶液 ,维持提取罐内沸腾。

(64) 三种氨基酸修饰玻碳电极表面在中性 溶液 均呈现荷负电性,对于带负电荷的活性探针离子均具有静电排斥作用。

(65) 剖析表现 溶液 中有几格令的砷。

(66) 氧化剂和还原剂会迅速使北陵鸢尾色素 溶液 降至无色。

(67) 采用有机试剂 溶液 检验了反应体系的光催化性能。

(68) 聚合物高分子 溶液 具有网链结构,运动中显示出的黏弹效应直接关系相界面能量转换。

(69) 喀斯特溶洞中石钟乳和石笋在形成过程中,碳酸盐矿物结晶时,常常捕获周围水 溶液 和气体,形成不混溶流体包裹体组合。

(70) 火斗 溶液 是极性不分子,油不朱长短极性不分子.

(71) 用溶胀后的聚二甲基硅氧烷弹性印章进行毛细微模塑,得到了聚苯乙烯丙酮 溶液 的微四方点阵图案。

(72) 如果将滴定用氢氧化钠标准 溶液 浓度从0.1克当量浓度降至0.05克当量浓度,则能显著提高测定结果的再现性。

(73) 方法:采用氯化钙和磷酸氢二钠缓冲 溶液 交替矿化的方法,在丝素膜上仿生沉积羟基磷灰石。

(74) 结果显示:在磷酸缓冲 溶液 中,辣根过氧化物酶在钛酸纳米管修饰的玻碳电极上呈现出一对良好的氧化还原峰。

(75) 目的:一元过氧乙酸 溶液 生产工艺和稳定性的研究。

(76) 蛋白质与多糖类在水 溶液 中表现出热力学相容性及不相容性。

(77) 选用通用的配药赋形剂甘露醇,作为水 溶液 的溶质.

(78) 采用含甲醇的水 溶液 ,选择性地提取鲜淡菜中软骨藻酸,经离心、过滤等手段进行样品处理,在最优化的条件下进行液相色谱检测。

(79) 经过熟化时间段后,着色的 溶液 流入了计量管道.

(80) 以硝酸锌和尿素为反应原料,利用均匀沉淀法在水 溶液 中直接制备了多种形貌的氧化锌。

(81) 改用缓冲 溶液 作为酸化剂,提高了分析结果的准确性.

(82) 用中性氧化铝柱层析法对粗产物进行分离提纯,用含一定量吡啶的二氯甲烷 溶液 作为洗脱剂.

(83) 结果采用阿米卡星 溶液 护理会阴侧切伤口能减轻炎症反应.

(84) 以二苯胺磺酸钠为指示剂,用硫酸亚铁铵标准 溶液 滴定.

(85) 用制备的复合粉体对大红染料的稀释 溶液 进行脱色检验其光催化性能。并用XRD、TEM对粉体进行表征。

(86) 通过实验讨论三硫化二砷在无氧化性强酸、强碱 溶液 中的溶解性.

(87) 氯乙烯的聚合方法,有 溶液 聚合、本体聚合、乳液聚合和悬浮聚合.

(88) 硫磺从 溶液 中分离电解质和接触铅板,最终会转化为硫酸铅晶体。

(89) 但是,正当霍乱疫情最严重的时候,有一位中国医官却下令节约使用这些 溶液 。

(90) 记录并比较伴随地得到的供试 溶液 和标准溶液的光谱。

(91) 本试验用含有EMS的石蜡油 溶液 处理10个玉米材料的成熟花粉,研究了EMS对花粉离体萌发率、M1代生理损伤以及M2代的诱变效应。

(92) 和已有模型相比,新模型计算结果更准确,而且可以描述压力对溶剂在聚合物 溶液 中的自扩散系数的影响,这是已有模型所不具备的。

(93) 该方法使用非保护的多肽片段,无需酶或化学活化试剂,在缓冲 溶液 中能够高产率地获得多肽和蛋白质。

(94) 结论枸橼酸盐缓冲 溶液 是制备聚维酮碘凝胶最佳的缓冲液,有利于提高聚维酮碘凝胶的稳定性。

(95) 植物可以使用的存在于土壤里的矿物质,在他们扎根之前,一定要溶解于土壤 溶液 中。

(96) 将茶叶样品磨细、悬浮在琼脂 溶液 中制成悬浮液.

(97) 目的探讨用沉淀法测定枸橼酸钾 溶液 含量的方法.

(98) 在EY水 溶液 三维荧光等高线光谱图中,瑞利散射线与荧光等高线有部分相交。

(99) 采用氯化铈铽水 溶液 与草酸为原料,合成了铈铽共晶氧化物.

(100) 讨论了硝酸镁 溶液 再生时所采用的两种方法:沉降法和压滤法。

(101) 用高分子 溶液 流过时间对浓度作图的外推值t0重新计算相对粘度,则高分子溶液比浓粘度与浓度之间满足线性关系。

(102) 例如碳酸钠和邻苯二酸氢钾,分别用来标定酸和碱 溶液 .

(103) 采用 溶液 培养技术,研究了不同营养元素缺乏条件下,阳春砂仁幼苗的生长发育规律及缺素症状。

(104) 介绍了照相级乙二胺四乙酸铁铵 溶液 的制备方法。

(105) 结果二种受试 溶液 均表现出一定的胚胎毒性和致畸性,但与新配溶液相比,存放溶液的毒性明显降低。

(106) 糖被制取用稀糖膏中的再结晶糖的饱合 溶液 处理挂糖衣和蜜饯糖,要把非常好的蔗糖晶体通过饱和的方法转化糖玉米糖浆或麦芽糖糊精。

(107) 你应该用一种特殊的 溶液 洗眼。

(108) 本课题主要从宜春锂云母中提取锂,继而以硫酸锂 溶液 为原料复分解反应制备氯化锂。

(109) 用标准 溶液 去滴定样本溶液,找出其摩尔浓度。

(110) 受试者每周接受一次10分钟治疗,苯乙醇 溶液 或安慰剂,共两周。

(111) 无机碱盐水 溶液 的饱和点通常随着温度和浓度的升高而降低,这将造成皂化剂中盐的析出,形成坚固的水垢.

(112) 本文作者利用含高浓度盐 溶液 的抽提液处理细胞以除去可溶性蛋白质,结合DGD特殊电镜技术,观察到了前环藻核内精细结构的存在。

(113) 而任何一个分子的运动方向都与稀释 溶液 的浓度无关。

(114) 经电化学活化后的玻璃碳电极可吸附 溶液 中的铅离子。

(115) 同时考察了六次甲基二异氰酸酯用量对交联程度的影响。结果表明预聚物在热水中降解很快,而在310K的磷酸缓冲 溶液 中降解要慢的多。

(116) 采用分子动力学模拟方法,研究了不同表面电荷密度下圆柱形纳米管道中 溶液 粒子分布情况及电渗流特性。

(117) 通过控制铝盐与碳酸氢铵 溶液 的沉淀反应条件,制备出结晶碳酸铝铵前驱体.

(118) 在家庭中,乙酸稀 溶液 常被用作除垢剂。

(119) 在合成了几种带不同组成比吖啶基三元共聚物的基础上,对其 溶液 和薄膜的吸收与荧光发光光谱进行了表征。

(120) 实验结果表明,这些染料在醋酸丁酯 溶液 中的光退色符合一级反应动力学。

什么水果含维生素c多

基因与健康   基因检测现代医学研究证明,除外伤外,几乎所有的疾病都和基因有关系。像血液分不同血型一样,人体中正常基因也分为不同的基因型,即基因多态型。不同的基因型对环境因素的敏感性不同,敏感基因型在环境因素的作用下可引起疾病。另外,异常基因可以直接引起疾病,这种情况下发生的疾病为遗传病。 可以说,引发疾病的根本原因有三种: (1)基因的后天突变; (2)正常基因与环境之间的相互作用; (3)遗传的基因缺陷。 绝大部分疾病,都可以在基因中发现病因。 基因通过其对蛋白质合成的指导,决定我们吸收食物,从身体中排除毒物和应对感染的效率。 第一类与遗传有关的疾病有四千多种,通过基因由父亲或母亲遗传获得。 第二类疾病是常见病,例如心脏病、糖尿病、多种癌症等,是多种基因和多种环境因素相互作用的结果。 基因是人类遗传信息的化学载体,决定我们与前辈的相似和不相似之处。在基因“工作”正常的时候,我们的身体能够发育正常,功能正常。如果一个基因不正常,甚至基因中一个非常小的片断不正常,则可以引起发育异常、疾病,甚至亡。 健康的身体依赖身体不断的更新,保证蛋白质数量和质量的正常,这些蛋白质互相配合保证身体各种功能的正常执行。每一种蛋白质都是一种相应的基因的产物。 基因可以发生变化,有些变化不引起蛋白质数量或质量的改变,有些则引起。基因的这种改变叫做基因突变。蛋白质在数量或质量上发生变化,会引起身体功能的不正常以致造成疾病。基因检测概念  基因检测是通过血液、其他体液或细胞对DNA进行检测的技术。 基因检测可以诊断疾病,也可以用于疾病风险的预测。疾病诊断是用基因检测技术检测引起遗传性疾病的突变基因。目前应用最广泛的基因检测是新生儿遗传性疾病的检测、遗传疾病的诊断和某些常见病的辅助诊断。目前有1000多种遗传性疾病可以通过基因检测技术做出诊断。 近年来令人非常兴奋的是预测性基因检测的开展。利用基因检测技术在疾病发生前就发现疾病发生的风险,提早预防或采取有效的干预措施。目前已经有20多种疾病可以用基因检测的方法进行预测。 检测的时候,先把受检者的基因从血液或其他细胞中提取出来。然后用可以识别可能存在突变的基因的引物和PCR技术将这部分基因复制很多倍,用有特殊标记物的突变基因探针方法、酶切方法、基因序列检测方法等判断这部分基因是否存在突变或存在敏感基因型。 目前基因检测的方法主要有:荧光定量PCR、基因芯片、液态生物芯片与微流控技术等。传统检测的区别  我们通常的医疗检测手段是针对疾病的具体症状或已有病变进行检测。现代科学的发展促进了医疗检验手段的不断发展,可以深入细微之处对疾病进行纵向或横向的剖析。 大家都知道,人体的基本组成部分是细胞,如果可以对细胞展开一种实质的剖析,就可以找到疾病产生的根源。如癌症是人体细胞发生突变并大量复制的结果。一般医疗检测手段是要看你身体是否已经有癌细胞存在,而对于没有产生癌变的细胞但已经具有的风险却无从得知。基因检测则不然,通过基因检测完全可以准确地告诉你,未来某个生命时段是否存在发生某种疾病的可能性或机率,给你一个预警通知,以便及早采取有效的防病措施。 基因 基因检测 基因测序 体检 gene gene-test 基因检测与常规体检的区别? 疾病易感基因检测与常规体检都能起到预防的作用,但二者反映的是不同的阶段。一种疾病从开始到发病要经历很长的时间。基因检测是人在没发病时,预防将来会发生什么疾病,属于检测的第一阶段;而常规检测是发生疾病后,疾病到达什么程度。如:早期、中期等等,这属于检测的第二个阶段,是临床医学的范畴。所以说,基因检测是主动预防疾病的发生,而传统的体检手段则无法起到这样的预防作用。 传统体检主要针对人体已经出现的临床病变进行诊断和检查,它的主要任务是配合疾病的治疗,无法在病变之前预知,下更多、更深的结论。也就是说,在疾病的预防上,传统体检十分的被动和滞后。现实中很多疾病并无明显征兆,而一旦发病,现代医学往往束手无策,患者及其家人就可能一生痛苦和麻烦。 编辑本段准确率 疾病家庭的遗传史就是疾病易感基因的遗传所造成的,所以基因检测能够检测出这些遗传的易感基因型,检测准确率达到99.9999%。检测病种类型  (1) D类34种:Graves病、桥本甲状炎、急性淋巴细胞白血病、慢性粒细胞白血病、系统性红斑狼疮、慢性乙肝、慢性重型乙肝、自身免疫性肝炎、乙肝后肝硬化、原发性胆汁性肝硬化、 I型糖尿病、 Vogt-小柳原田综合症 、类风湿性关节炎、尿毒症、 Iga系肾病、非Iga系膜增值性肾炎、抗肾小球基底膜性肾炎、激素敏感型肾病、肾癌、发作性睡病、哮喘、骨关节结核、克罗恩病、再生障碍性贫血、Hiv感染和艾滋病、过敏性鼻炎、牙周炎、膀胱癌、食管癌、结肠癌、直肠癌、白塞氏病、慢性荨麻疹、视神经炎 . (2) E类9种:心脑血管疾病易感基因检测(包括原发性高血压、高血脂、冠心病、动脉粥样硬化、出血性脑卒中、缺血性脑卒中、房颤、老年痴呆、高血压合并左室肥厚 ) (3) F类5种:糖尿病及其并发症易感性检测(包括Ⅱ型糖尿病、糖尿病并发肾病、糖尿病眼病、糖尿病心血管并发症、Ⅱ型糖尿病神经病变 ) (4) Gc类13种:男性肿瘤易感基因检测(包括肺癌、肝癌、胃癌、急性淋巴细胞白血病、慢性淋巴细胞白血病、结肠癌、直肠癌、喉癌、食管癌、胃溃疡、鼻咽癌、膀胱癌、前列腺癌等) (5) Hc类15种:女性肿瘤易感基因检测(包括乳腺癌、卵巢癌、宫颈癌、食管癌、鼻咽癌、肺癌、原发性肝癌、胃癌、胃溃疡、结肠癌、直肠癌、喉癌、膀胱癌、急性淋巴细胞白血病、慢性淋巴细胞白血病等) (6) X类5种:胰腺癌、Ⅱ型糖尿病足、过敏性紫癜性肾炎、老年性白内障、慢性支气管炎。 (7) Y类5种:内源性高甘油三酯血症、高胆固醇血症、IIb型高脂蛋白血症、高脂血症人群的膳食干预敏感性 (8) 美丽一号M1——健康美容基因检测 (9) 美丽二号M2——肥胖易感基因检测基因亲子鉴定  通过遗传标记的检验与分析来判断父母与子女是否亲生关系,称之为亲子试验或亲子鉴定。DNA是人体遗传的基本载体,人类的染色体是由DNA构成的,每个人体细胞有23对(46条)成对的染色体,其分别来自父亲和母亲。夫妻之间各自提供的23条染色体,在受精后相互配对,构成了23对(46条)孩子的染色体。如此循环往复构成生命的延续。 由于人体约有30亿个核苷酸构成整个染色体系统,而且在生殖细胞形成前的互换和组合是随机的,所以世界上没有任何两个人具有完全相同的30亿个核苷酸的组成序列,这就是人的遗传多态性。尽管遗传多态性的存在,但每一个人的染色体必然也只能来自其父母,这就是DNA亲子鉴定的理论基础。 传统的血清方法能检测红细胞血型、白细胞血型、血清型和红细胞酶型等,这些遗传学标志为蛋白质(包括糖蛋白)或多肽,容易失活而导致检材得不到理想的检验结果。此外,这些遗传标志均为基因编码的产物,多态信息含量(PIC)有限,不能反映DNA编码区的多态性,且这些遗传标志存在生理性、病理性变异(如A型、O型血的人受大肠杆菌感染后,B抗原可能呈阳性。因此,其应用价值有限。 DNA检验可弥补血清学方法的不足,故受到了法医物证学工作者的高度关注,近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、案、碎尸案、致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。 亲子鉴定的准确性 DNA亲子鉴定是目前最准确的亲权鉴定方法,如果小孩的遗传位点和被测试男子的位点(至少1个)不一致,那么该男子便100%被排除血缘关系之外,即他绝对不可能是孩子的父亲。如果孩子与其父母亲的位点都吻合,我们就能得出亲权关系大于99.99%的可能性,即证明他们之间的血缘亲子关系。了解自身是否有家族性疾病的致病基因  具有癌症或多基因遗传病(如老年痴呆、高血压等)家族史的人是最需要做基因体检的对象,通过基因体检这些高危险群可以知道自己是不是带有疾病基因,以便及早发现和及早预防,并做好饮食保健与生活习惯的调整,来避免疾病发生的可能。 正确选择药物,避免药物浪费和药物不良反应  由于个体遗传基因上的差异,不同的人对外来物质(如药物)会产生的反映也会有所不同,因此部分病人使用正常剂量的药物时,可能会出现药物过敏、红肿发疹的现象,或者是在服用相同药物时,有人觉得神效,有人却不但无效还有副作用。基因体检通过对药物反应相关基因的测定,帮助了解基因体质,协助预测可能的药物反应。 提供健康风险管理最好的依据  目前的很多不良环境因子,如空气、水质及农药的污染加上不良生活习惯像抽烟、饮酒等,都会容易使体内的基因受到破坏而产生疾病。长期暴露在这些高度污染环境或有不良生活习惯的人以及目前身体健康的民众都可以通过基因体检了解个人在不同疾病上的发生倾向,进行全面的生活调整或干预,以期降低风险延缓疾病发生,达到基康所倡导的“个性医疗,解码健康”的目的。 焦作爱得健康管理有限公司宣 基因检测预防疾病

复制DNA 的作用是什么

1、草莓。草莓营养价值丰富,被誉为是“水果皇后”,含有丰富的维生素C、维生素A、维生素E、维生素PP、维生素B1、维生素B2、胡萝卜素、鞣酸。

/iknow-pic.cdn.bcebos.com/3801213fb80e7bec5bf55594222eb9389b506b93"target="_blank"title=""class="ikqb_img_alink">/iknow-pic.cdn.bcebos.com/3801213fb80e7bec5bf55594222eb9389b506b93?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc=""/>

2、柿子。柿叶中含有多种活性成分,如维生素C、多种黄酮甙类、二萜类、胆碱、β-胡萝卜素等。

/iknow-pic.cdn.bcebos.com/0b7b02087bf40ad1d64e91965a2c11dfa9ecce19"target="_blank"title=""class="ikqb_img_alink">/iknow-pic.cdn.bcebos.com/0b7b02087bf40ad1d64e91965a2c11dfa9ecce19?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc=""/>

3、柑橘。柑橘类水果所含有的人体保健物质,已分离出30余种,其中主要有:类黄酮、单萜、香豆素、类胡萝卜素、类丙醇、吖啶酮、甘油糖脂质等。

/iknow-pic.cdn.bcebos.com/1b4c510fd9f9d72abf9f4668d92a2834359bbbc8"target="_blank"title=""class="ikqb_img_alink">/iknow-pic.cdn.bcebos.com/1b4c510fd9f9d72abf9f4668d92a2834359bbbc8?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc=""/>

4、奇异果。猕猴桃含有丰富的矿物质,包括丰富的钙、磷、铁,还含有胡萝卜素和多种维生素,对保持人体健康具有重要的作用。/iknow-pic.cdn.bcebos.com/bd3eb13533fa828b9915cc96f01f4134970a5a94"target="_blank"title=""class="ikqb_img_alink">/iknow-pic.cdn.bcebos.com/bd3eb13533fa828b9915cc96f01f4134970a5a94?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc=""/>

5、葡萄。葡萄的营养成分葡萄不仅味美可口,而且营养价值很高。成熟的浆果中葡萄含糖量高达10%-30%,以葡萄糖为主。

/iknow-pic.cdn.bcebos.com/1f178a82b9014a90652d17c8a4773912b31beeb0"target="_blank"title=""class="ikqb_img_alink">/iknow-pic.cdn.bcebos.com/1f178a82b9014a90652d17c8a4773912b31beeb0?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc=""/>

/www.jkb.com.cn/news/industryNews/2011/0321/200399.html"target="_blank"title="健康报网——含维生素C的食物">健康报网——含维生素C的食物

化学发光反应要满足什么条件

三、RNA引物

目前所发现的DNA聚合酶都需要一个具3′-OH的引物,才能将合成原料dNTP一个一个接上去。因为DNA聚合酶不能催化两个游离的dNTP在DNA模板上进行聚合,如图12-3所示。实验又发现抑制RNA聚合酶的药物如利福霉素(rifampicin)能抑制DNA的复制。再者在体外DNA复制实验中发现冈崎片段的5′端都有一小段4~12个核苷酸的RNA引物(RNA primer)。现知RNA聚合酶合成新链时不需要引物,能直接催化游离NTP聚合。可见RNA引物为DNA聚合酶提供聚合新核苷酸所需的3′-OH。RNA引物最后被DNA聚合酶Ⅰ除去,留下的空隙也由该酶补满,缺口再由DNA连接酶封口。

在DNA的复制需要RNA引物呢,除了DNA聚合酶不能催化两个游离dNTP的聚合,而RNA引物酶却具有此能力外,这种作用尚可尽量减少DNA复制起始处的突变。因为游离核苷酸起始处的聚合最容易出现差错,若用RNA引物,即使出现差错,由于最后将被DNA聚合酶Ⅰ切除,便可提高DNA复制的真实性。

四、引发体

引发体(primosome)是由多种蛋白质及酶组成,是DNA复制开始所必需的。引发体中的某些蛋白质如DnaA能结合至DNA复制起始部位,DnaB具有解链酶的作用,DnaC辅助DnaB结合到复制起始点,使起始部位的双链解开。而引发体中的引物酶(primase)在已解开起始部位的DNA单链按碱基互补配对催化NTP聚合,合成一小片段的RNA,作为DNA合成的引物,即沿此引物RNA的3′-OH进行延伸。

四、真核生物端粒DNA的复制

真核生物线性染色体的两个末端称为端粒(telomere)。按上述DNA复制机制新合成子链5′端的那段RNA引物被切除后,必留下一个空缺,假如每次细胞分裂或DNA复制都是如此,端粒将会不断缩短,最终导致关键基因的丧失及种系灭绝的危险,但事实并非如此。那么真核生物一定存在着某种阻止端粒缩短的机制。

(一) 端粒DNA的结构和端粒酶

对端粒DNA序列的分析,发现端粒DNA的3′端是由数百个串联重复GT丰富的短的寡核苷酸序列,如四膜虫的重复序列为-GGGGTT-,人为-AGGGTT-。端粒DNA序列虽不含功能基因,但对维持染色体的稳定性起着重要作用。如果端粒丧失,染色体之间可能出现端-端融合、降解、重排乃至染色体丢失等变化,最后细胞衰亡。

近年来,发现了一种能防止端粒缩短的酶,称为端粒酶(telomerase),该酶由蛋白质和RNA两部分组成,其中RNA作为合成端粒DNA的模板,端粒酶是目前所知唯一携带RNA模板的逆转录酶,具有种属特异性,例如四膜虫的端粒酶,其RNA部分含159个核苷酸,其中有一段序列为5′-CAACCCCAA-3′可作为合成端粒DNA3′端GT 丰富序列-GGGGTT-模板。人端粒酶的RNA含450个碱基,其中-CUAACCCUAAC-为合成-AGGGTT-的模板。这样可防止细胞分裂时DNA复制端粒的缩短。

端粒、端粒酶和细胞的衰老有密切关系。有人将端粒称为分子钟或有丝分裂钟。但是恶性肿瘤细胞当端粒缩短到某种程度,端粒酶活性又重新出现,对端粒进行补偿,使之永不衰亡,形成恶性增殖。

(二) 端粒酶的作用机制

第四节DNA的损伤与修复

DNA是储存遗传信息的物质。从生物遗传角度来讲,要求在复制过程中保持遗传密码的稳定性,物种才能得以延续。哺乳动物单倍体细胞的基因组由2.9X109 bp DNA组成。动物一生中,从受精卵细胞到个体亡,这些遗传密码要经过千万次的复制。在物种进化的长河中,DNA复制的次数更是难以计数,而且生物体内外环境都存在着使DNA损伤(DNA damage)的因素。可见,除DNA复制的高度真实性外,还要求某种修复DNA损伤的机制。每一遗传信息都以不同拷贝储存在DNA两条互补链上。因此,若一条链有损伤,可被修复酶切除,并以未损伤的信息重新合成与原来相同的序列,这就是DNA修复(DNA repair)的基础。

但是在漫长的进化过程中,DNA的序列还是会发生改变, 通过复制传递给子代成为永久的,这种DNA的核苷酸序列永久的改变称为突变(mutation)。若发生的突变有利于生物的生存则保留下来,这就是进化;若不适应于自然选择(nature selection)则被淘汰,因此生物的进化可以看成是一种主动的基因改变过程,这是物种多样性的原动力。所以,生物的变异是绝对的,修复是相对的。

一、造成DNA损伤的因素

造成DNA损伤的因素有生物体内自发的、亦有外界物理和化学等因素。

(一) 自发的因素

由于DNA分子受到周围环境溶剂分子的随机热碰撞(thermal collision),腺嘌呤或鸟嘌呤与脱氧核糖间的N-糖苷键可以断裂,使A或G脱落。人体细胞中DNA每天每个细胞要脱落5 000个嘌呤碱,每天每个细胞也有100个胞嘧

啶自发脱氨而成尿嘧啶。

(二) 物理因素

1.紫外线损伤由于嘌呤环与嘧啶环都含有共轭双键,能吸收紫外线而引起损伤。嘧啶碱引起的损伤比嘌呤碱大10倍。损伤是由于嘧啶二聚体的产生,即2个相邻嘧啶碱的C5和C6共价交联,如图12-18所示。

2.电离辐射损伤如X射线和γ射线,可以是辐射能量直接对DNA的影响,或DNA周围的溶剂分子吸收了辐射能,再对DNA产生损伤作用。如碱基的破坏、单链的断裂、双链的断裂、分子间的交联、碱基脱落或核糖的破坏等。

(三) 化学因素

二、DNA损伤的类型

根据DNA分子的改变,可把突变分为下面几种主要类型。

点突变

点突变(point mutation)是DNA分子上一个碱基的变异,可分为:①转换(transition)同型碱基,如一种嘌呤代替另一种嘌呤或一种嘧啶代替另一嘧啶。②颠换(transversation)异型碱基,即嘌呤变嘧啶,或嘧啶变嘌呤。点突变可根据发生在DNA分子的部位,如发生在启动子或剪接信号部位可以影响整个基因的功能;若发生在编码序列,有的可以改变蛋白质的功能如引起镰状红细胞贫血;有的则为中性变化,即编码氨基酸虽变化,但功能不受影响;有的甚至是静止突变,碱基虽变但编码氨基酸种类不变。

缺失

缺失(deletion)是一个碱基或一段核苷酸链乃至整个基因,从DNA大分子上丢失。如有些地中海贫血、生长激素基因缺失,再如上述Lesch- Nyhan综合征是HGPRT基因缺失。

(三)插入

插入(insertion)是一个原来没有的碱基或一段原来没有的核苷酸序列插入到DNA大分子中去,或有些芳香族分子如吖啶(acridine)嵌入DNA双螺旋碱基对中,可以引起移码突变(frame-shift-mutation),影响三联体密码的阅读方式。

(四)倒位

DNA链内部重组,使其一段方向颠倒。

三、修复机制

光修复机制

这种机制主要存在于低等生物。

1. 不需要光复活酶

光复活酶(photoreactivating enzyme)也称为DNA光修复酶(photolyase)。当280nm紫外线照射DNA产生的嘧啶二聚体,在短波239nm照射下,二聚体即分解成单体。

2. 需要光复活酶紫外线照射使光复活酶激活,能解聚嘧啶二聚体。

切除修复

因不需要光照射,故也称暗修复。DNA引起大的损伤, 包括UV引起的嘧啶二聚体、嘧啶/ 环丁烷二聚体、几个其它类型的碱基加合物、通过曝露于香烟的烟尘在DNA中形成的苯并芘尿嘧啶。一般由切除修复(excision repair)系统修复。该修复途径对所有生物的生存是关键的。在大肠杆菌E.coli中,有一种UV特异的切割酶(excinuclease或UVrABC enzyme),能识别UV照过产生的二聚体部位。并在远离损伤部位5′端8个核苷酸处及3′端4个核苷酸处各作一切口。像外科手术“扩创”一样,将含损伤的一段DNA切掉。DNA聚合酶Ⅰ进入此缝隙,从3′-OH开始,按碱基配对原则以另一条完好链为模板进行修复。最后由DNA连接酶将新合成的DNA片段与原来DNA链连接而封口 (图12-19) 。真核细胞的切割核酸酶的作用和机制,是与细菌的酶完全类似的方式对嘧啶二聚体切割。切除修复是人体细胞的重要修复形式,有些遗传性疾病如着色性干皮病(xeroderma pigmentosum),是常染色体隐性遗传性疾病。纯合子患者的皮肤对阳光或紫外线极度敏感,皮肤变干、真皮萎缩、角化、眼睑结疤、角膜溃疡,易患皮肤癌。此病是由于缺乏UV特异内切核酸酶造成的。

(三) 碱基切除修复

每个细胞都有一类DNA糖苷酶(DNA glycosylase),每一种酶能识别一种DNA分子中改变的碱基,能水解该改变的碱基与脱氧核糖间的糖苷键,使改变的碱基脱落,在DNA上产生一个缺嘌呤或缺嘧啶的位(apurinic-or apyrimidinic-site,AP site),再藉切除修复机制进行修复。现知至少有20种不同的DNA糖苷酶,各具特异性。如识别胞嘧啶脱氨生成的尿嘧啶,腺嘌呤脱氨基产物,开环的碱基,不同烷基化类型的碱基等。如胞嘧啶脱氨后即成尿嘧啶,若不纠正,可引起类型转换,即G-C→A-T。

碱基切除修复(base-excision repair)步骤如下:

1)DNA糖苷酶识别损伤的碱基,在碱基和脱氧核糖之间切割。

2)AP核酸内切酶切AP位置附近的磷酸二酯键。

3)DNA聚合酶Ⅰ用它的5′→3′外切酶活性除去损伤链,从缺口的3′-OH起始

修复合成,用新合成的DNA替代。

4)最后缺口由DNA连接酶封口(图12-20)。

尿嘧啶DNA糖苷酶修复的发现,解答了一个长年以来的疑题,即组成RNA是U,而组成DNA却是甲基化为T,即从UMP→dTMP,要消耗能量。但U和T都与A互补配对,所编的密码是相同的。生物体为什么花如此代价? 现在问题清楚了,尿嘧啶-DNA糖苷酶只能切除DNA链上的尿嘧啶,而不能切除DNA链上的胸腺嘧啶,因为后者C5有一甲基,好像是给尿嘧啶加上一个标签。胞嘧啶脱氨基后形成的尿嘧啶即无此标签,即被该糖苷酶识别为改变了的碱基。若DNA与RNA一样也用尿嘧啶,那么胞嘧啶脱氨形成尿嘧啶,与正常部位的尿嘧啶便无法区别,不能纠正,造成子代DNA的突变即GC→AT。可见DNA由T代替U,能增加遗传信息的稳定性。相反,RNA不需修复,拷贝数很多,半衰期短,即使有个拷贝的胞嘧啶脱氨基转变为U,影响也不大,合成出来的绝大多数蛋白质还是具有正常生理功能,而且U作为合成原料经济得多。

第五节重组DNA技术

DNA重组(recombination of DNA)是自然界常见现象,指的是在两个DNA分子之间,或一个DNA分子的两个不同部位之间通过链断裂和片段的交换重接,改变了基因的组合序列。这种交换可发生于同一细胞内或细胞间,甚至不同物种的DNA。DNA重组现象广泛存在于真核细胞、原核细胞乃至病毒和质粒。

本节所要介绍的重组DNA技术或基因工程(genetic engineering),是70年代由Stanford大学Boyer、Cohen和Berg等科学家建立的一种革命性的技术方法,它是在实验室内用人工方法将不同来源,包括不同种属生物的DNA片段,拼接成一个重组DNA(recombinant DNA)分子,将其引入活细胞内,使其大量复制或表达。这种技术方法称为重组DNA技术。由于它可以把一个生物体中携带的某一特定的遗传信息(基因),通过一定的方法转移到另一生物体中,使之获得前者的遗传特征,创造新的遗传组合,所以又称为基因工程,若从遗传角度来考虑也可称为遗传工程。重组DNA技术中所含有的目的DNA分子或基因需进行无性繁殖、扩增成为一个克隆(clone),因此基因工程在不同的场合又可有不同的名称,如分子克隆(molecular cloning)、DNA克隆、基因克隆等。

4.聚合酶链反应(PCR)扩增DNA片段或cDNA

以已有DNA为模板,通过PCR扩增出所需片段。另可以mRNA为模板,采用逆转录酶PCR进行扩增,得到所需要的cDNA。(详见下节)。

(二) 载体

欲将外源基因或DNA片段导入宿主细胞进行扩增或表达,需要通过一个能在宿主细胞中进行自我复制并表达目的基因的载体(vector)的介导,目的DNA与载体在体外构成重组DNA分子,然后导入宿主细胞,进行扩增及表达。以大肠杆菌作为宿主细胞的载体有:质粒、λ噬菌体、粘粒和M13噬菌体等。这些载体分为克隆用和表达用不同种类,有些还含有在真核细胞中生活及基因表达必须的成分,供不同实验目的选用,多数已作为商品供应。

1. 克隆载体(vector of clone)

(1)质粒质粒(plasmid)是细菌染色体外小的双链闭环的DNA分子,能自主复制,并含有抗药性基因。

较理想的质粒应符合下列条件:

1) 要有多个单切口的限制性内切酶的位点,而且外源DNA片段插入后,不影响质粒的复制。

2) 含有抗药性或其他可供筛选的标志,外源DNA插入后,抗药性消失,或其他酶活性丧失。

3) 含有高效的自主复制序列,这样在宿主细胞中质粒复制的拷贝数多。若含有能在真核细胞生活的序列,这种载体则能在真核细胞中生活及表达。pBR322是一种最常用、最基础的质粒。通过人工构建而成,其结构如图12-22所示。大小:4363bp抗药性基因:有两个。氨苄青霉素抗性 (ampicillin resistance,ampR)基因编码β-内酰胺酶(β-1actamase),能切开氨苄青霉素的内酰胺环,从而使之失效。若在此基因中插入外源DNA片段,即破坏该酶的结构。另一四环素抗性(tetracycline resistance,ampR)基因,编码一种蛋白质,能改变细菌膜的状态,阻止四环素进入细胞而赋予宿主抗四环素的能力。若

该基因被外源DNA插入即失活。自主复制(ori)成分(序列),使pBR322在大肠杆菌内能高效进行复制,产生多拷贝。

另一些质粒如pUC系统,除含ampr基因外,还含大肠杆菌的lacZ基因也常被用作为选择的标记。此基因编码β半乳糖苷酶。LacZ位于多位点接头(polylinker)上。有的还含有高效的启动子。

(2) λ噬菌体λ噬菌体(bacteriophage λ)为线状双链DNA病毒(约50kb),感染大

肠杆菌。经改造的噬菌体有一、二个EcoRⅠ切点,并含有LacZ基因作为筛选的标志。当中的1/3序列不是病毒生活所必需,可以去除,而由外源DNA片段(5~25kb)替代。如图12-23所示。

β-半乳糖苷酶能分解一种化学品称为5-溴-4-氯-3吲哚-半乳糖苷(5-bromo-4-chloro

-3-indolyl-galactoside,X-gal),X即为5-bromo-4-chloro-3-indolyl,是一发色(蓝色)基团,当它与半乳糖以糖苷键结合时即为无色。但是X-gal经β-半乳糖苷酶作用后即将X基团释放出来而成蓝色。若LacZ被插入的DNA片段破坏,则不能产生β-半乳糖苷酶,因此在含有X-gal的培养基中成为无色的斑点。若LacZ完整,X-gal被β-半乳糖苷酶分解而成为蓝色的斑点,故可作为筛选的标志。

(3) 其他

2. 表达载体(expression vector)

表达载体是带有调控克隆基因表达必需的转录和翻译信号的克隆载体。克隆基因在细菌和其它细胞中的过量表达,能够产生大量的特异蛋白质。

(1)大肠杆菌表达载体大肠杆菌表达载体(E.coli expression vector)除具有克隆载体所具备的性质以外,还带有控制在大肠杆菌中表达元件即转录和翻译所必需的DNA序列 : 启动子、操纵基因、编码阻遏物的基因、核糖体结合位点、转录终止信号。

(2)真核表达载体真核表达载体(eukaryotic expression vector)含有必不可少的原核序列,如在大肠杆菌中能够作用的复制子,便于挑选带重组质粒细菌的抗生素抗性基因。但在质粒中还包括在真核细胞中生活和表达元件:启动子/ 增强子、克隆位点、终止信号和加poly(A) 信号、剪接供体和受体、复制起始点和选择标记基因。

(三) 工具酶

限制性内切酶(restriction enzyme或restriction endonuclease),DNA连接酶、末端脱氧核苷酸转移酶(terminal deoxynucleotidyl transferase,TdT)、逆转录酶、S1核酸酶(切单链DNA或RNA)、碱性磷酸酶等均属工具酶。限制性内切酶是重组DNA技术中最关键的工具酶,现着重加以介绍。

限制性内切酶是微生物的一种自我保护的酶,它能识别双链DNA分子中特异碱基序列并切开。所以当外源DNA侵入细菌体时,细菌体为保护自身DNA的完整性,通过其所含的特有的限制性内切酶对外源DNA进行酶解,而自身的DNA分子中所含该限制性内切酶的识别碱基序列则被另一种酶进行甲基化而保护起来,故不被自己的限制性内切酶所切断。

限制性内切酶识别的DNA序列多数为4~6个碱基,新近发现一些能识别8个碱基的。识别碱基数少的酶对DNA切的机率多,碱基数大则少。所以识别8个碱基序列的酶,可用于分析大片段DNA,可切成上百乃至上千kb的片段。限制性内切酶的识别序列都具有回文或双重对称结构的特点。

切口:有两种切口。一种切开后,即成黏性末端(cohesive ends或sticky ends),因为两个末端的碱基互补配对,易通过氢键相连。

有些限制性内切酶的切口,成为平头末端(blunt ends)

不同的DNA分子上若有某一种限制性内切酶的位点,均能被该酶切断,并产生相同的切口,这对重组DNA分子很有利。

拼接方法:

1. 黏性末端

2.均聚体尾部 (homopolymeric tailing)

3.化学合成的接头 (chemical synthetic linker)

三、重组DNA分子引入宿主细胞

(一) 原核细胞

最常用的是大肠杆菌,要选择合适的菌株(strain)。宿主细胞先经氯化钙处理,以改变细胞膜的通透性,使重组DNA分子容易进入。这种将重组质粒DNA分子引入细菌,使其在细菌体内扩增及表达的过程称为转化 (transformation)。

(二) 动物细胞

宿主细胞主动摄取或被动引入外源DNA片段或重组DNA分子的过程称为转染(transfection)。进入细胞内的DNA可以被整合至宿主的基因组中,也可以在染色体外生活表达,这就需要采用含有能在真核细胞生活的结构成分的载体。可用磷酸钙介导(calcium-phosphate mediated)使外源DNA形成沉淀颗粒,颗粒若沉着在动物细胞的表面,以利细胞将这些颗粒摄入。近年用脂质体(1iposome)介导外源DNA的转移,可提高转染效率。用电穿孔(electroporation)方法,将外源DNA与宿主细胞放入特别的装置内,在高压电脉冲作用下,细胞外的DNA分子会在细胞膜上穿孔而入,并最终进入细胞核内,整合至宿主基因组中。用基因枪(颗粒轰击particle bombardment)方法是将外源DNA包裹了化学性质稳定的金或钨微粒以后,在电子发射装置或高压气流的驱动下,以极高速度打入受体细胞,组织和器官中,以进行基因转移技术。

用逆转录病毒(retrovirus)作为载体可以成功地感染动物细胞。另外可用微注射(microinjection)的方法,将外源DNA分子直接注射入细胞内或核内。近年发展一种转基因(transgenic)小鼠方法,即将重组DNA分子注射于单细胞受精卵的原核内,然后再将其植入一假妊娠母鼠的子宫内。生下的小鼠在全身各组织细胞的基因组DNA中都含有这种外源DNA,可以研究在整体条件下外源DNA的功能。

核酸的合成需要蛋白质参与吗

化学发光反应要满足什么条件

发光有两种,一种是由于温度达到条件而发光,一种是冷光,也就是是荧光.高于绝对零度的物体都会向周围空间发射电磁波,温度越高发射的电磁波的波长越短.当波长范围落在可见光范围内时就会发光.另外,高速运动的物体也会发射波长较短的电磁波.一般化学发光要么是温度的关系(大部分情况是燃烧),要么就是荧光反应---发光基团吸收能量使电子跃迁到高能级,在一定条件下释放电磁波的现象

很高兴为你解答有用请采纳

化学发光免疫分析包含两个部分,即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化,形成一个激发态的中间体,当这种激发态中间体回到稳定的基态时,同时发射出光子(hM),利用发光讯号测量仪器测量光量子产额。免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体)直接标记在抗原(化学发光免疫分析)或抗体(免疫化学发光分析)上,或酶作用于发光底物。化学发光免疫分析根据其所采用的标记物的不同可分为发光物标记、酶标记和元素标记化学发光免疫分析三大类。发光物标记的CLIA是以发光物质代替放射性核素或酶作为标记物(如吖啶酯),在反应体系中发光物质在碱性介质中氧化时释放大量自由能,产生激发态的中问体,该激发态的中间体由最低振动能级回到稳定的基态,各个振动能级产生辐射时,同时产生能量,多余的能量即为发射光子,从而产生发光现象。利用发光讯号的测量仪器,分析接收的光量子产额,通过计算机系统转换成被测物质的浓度单位。在此系统中包含两个部分,化学发光反应系统和免疫反应系统,即在抗原一抗体特异性反应过程中,伴随有化学反应过程而产生光的发射现象。化学反应系统中以化学反应为基础,化学发光的首要条件是吸收了化学能而处于激发态的分子或原子必须能释放出光子或者能将能量转移到另一个物质的分子上并使这种分子激发,当这种分子回到基态时释放出光子。化学发光与荧光的根本区别是形成激发态分子的激发能原理不同。荧光是发光物质吸收了激发光后使分子产生发射光;化学发光是化学反应过程中所产生的化学能使分子激发产生的发射光。因此,化学发光反应过程必须产生足够的激发能是产生发光效应的重要条件。化学发光反应可在气相、液相或固相反应体系中发生,以液相发光在免疫学检测中最常应用。

发光有两种,一种是由于温度达到条件而发光,一种是冷光,也就是是荧光。高于绝对零度的物体都会向周围空间发射电磁波,温度越高发射的电磁波的波长越短。当波长范围落在可见光范围内时就会发光。另外,高速运动的物体也会发射波长较短的电磁波。一般化学发光要么是温度的关系(大部分情况是燃烧),要么就是荧光反应---发光基团吸收能量使电子跃迁到高能级,在一定条件下释放电磁波的现象

化学中..置换反应要满足哪些条件?

置换反应也就是氧化还原的一种,单质和一种化合物生成另一种单质和化合物,一般都是金属来置换另一种金属,只需比较反应物金属的还原性,可以根据周期表的规律或K,CA,NA,MG,AL。。。。

辣根酶催化鲁米诺化学发光反应?

消毒液啊~漂白剂啊~~拿这之类的东西好好地洗一遍有血的东西就能 干扰 鲁米诺鉴定。 所以说想干坏事一定要好好蓄谋。 以下摘自百度百科: 鲁米诺的缺点 1、鲁米诺在铜、含铜合金、辣根或某些漂白剂的存在下发出荧光。因此如果犯罪现场被漂白剂彻

置换反应要满足哪些条件?

一种单质与一种化合物反应,生成另一种单质和另一种化合物的反应叫做置换反应,

只有当一种单质和一种化合物反应能产生气体或沉淀或水,这个反应就认为可以发生.

最典型的置换反应就是金属单质与稀酸生成氢气的反应。

置换反应发生的条件:

1.金属+酸:金属活动顺序H前金属可以置换酸中的H,酸不能是硝酸和浓硫酸 。

2.金属+盐:金属活动顺序前换后,盐必须是可溶盐。

3.H2和C与金属氧化物:条件是加热或高温。

常见的化学发光反应体系有那些?

最常见的是鲁米诺及其衍生物-过氧化氢体系

其次,吖啶脂类如光泽精-过氧化氢体系

二氧杂环丁烷类如AMPPD在碱性磷酸酶ALP的催化下分解

然后,还有过氧化草酰酯+染料体系,钌联吡啶+TPA体系等等。

除此之外还有很多,像鲁米诺体系里的氧化剂未必只有过氧化氢,还有高锰酸钾、Br2、甲醛等等。催化剂也可以是过氧化物酶或者过渡金属离子

还有就是诸如乙醇蒸汽、异丙醇蒸汽这些,在奈米金属粒子上也是可以产生催化化学发光的。

化学发光 电化学发光

应该是吧 发光都是电化学方面的~

标记用的化学发光剂应符合什么条件

应满足:

能参与化学发光反应;与抗原或抗体偶联后能形成稳定的结合物试剂;偶联后仍保持高的量子效应和反应动力;应不改变或极少改变被标记物的理化性质,特别是免疫活性。

化学发光

化学发光是指物质在进行化学反应时,由于吸收了反应时产生的化学能,而使反应物产物分子激发至激发态,受激发分子由激发态回到激发态时,便发出一定波长的光。

高锰酸钾是化学发光反应中常用的强氧化剂,它可以和分子结构中含有多个羟基或氨基的有机物发生化学发光反应。

核酸的合成需要蛋白质参与。

核酸的合成需要相应蛋白质的参与,因为核算的合成需要酶的催化,而绝大多数酶的化学本质是蛋白质,且核酸是一类生物聚合物,是所有已知生命形式必不可少的组成物质。

核酸的人工合成,以核苷或单核苷酸为原料并且不依靠任何天然模板或引物,采用有机合成反应或酶促合成反应进行的寡核苷酸或核酸大分子的合成。

核酸合成包括化学合成和酶促合成两个方面。化学合成以核苷或单核苷酸为原料,完全用有机化学方法来合成核酸。由于核苷酸是一个多官能团的化合物,因此,在化学合成中,必须将不希望发生反应的基团保护起来。

核酸生物合成抑制剂

核酸生物合成抑制剂是研究销密呼映吸随核酸合成的重要工具,大体上可分为三种类型:

(1)核苷酸合成抑制消价望期绍剂。包括氨基酸类似物,叶酸类360问答似物,碱基与核苷类似物等;

(2)DNA模板结合的抑制剂。包括放线菌素D、嵌合剂(如吖啶)和烷化剂(如氮芥等);

(3)作用于聚合酶的抑制剂。包括利福霉素、利福平、利链菌素和α-鹅膏蕈碱等。