吖啶橙荧光染料进行细胞染色-叶绿体吖啶橙染色荧光的作用

1. 普通光镜下,可看到叶绿体为绿色橄榄形,在高倍镜下可看到叶绿体内部含有较深的绿色小颗粒,即基粒。

2. 以Olympus荧光显微镜为例,在先用B(bule)激发滤片、B双色镜和O530(orange)阴断滤片的条件下,叶绿体发出火红色荧光。

3. 加入吖啶橙染色后,叶绿体可发出桔红色荧光,而其中混有的细胞核则发绿色荧光。

二、菠菜叶手切片观察

1. 在普通光镜下可以看到三种细胞 (1)表皮细胞: 为边缘呈锯齿形的鳞片状细胞; (2)保卫细胞: 为构成气孔的成对存在的肾形细胞;(3)叶肉细胞: 为排列成栅状的长形和椭圆形细胞。叶绿体呈绿色橄榄形,在高倍镜下还可以看到绿色的基粒。

2. 在荧光显微镜下,叶绿体发出火红色荧光,但其荧光强度要比游离叶绿体弱, 气孔发绿色荧光,两保卫细胞内的火红色叶绿体则环绕气孔排列成一圈。表皮细胞内的叶绿体数量要比叶肉细胞少。

3. 用吖啶橙染色后,叶绿体则发出桔红色荧光,细胞核可发出绿色荧光, 气孔仍为绿色。

分离叶绿体时应注意什么问题

RNA与DNA最重要的区别一是RNA只有一条链,二是它的碱基组成与DNA的不同,RNA没有碱基T(胸腺嘧啶),而有碱基U(尿嘧啶)。所以导致他们有以下性质上的不同。

1.两性解离:DNA无,只有酸解离,碱基被屏蔽(在分子内部形成了H键)。RNA有,有PI。

2.粘度大:DNA;RNA,粘度由分子长度/直径决定,DNA为线状分子,RNA为线团。

3.碱的作用:DNA耐碱RNA易被碱水解。

4.显色反应:

鉴别DNA和RNA+浓HCl RNA ------→ 绿色化合物

DNA ------→ 蓝紫色化合物苔黑酚

二苯胺啡啶溴红(荧光染料)和溴嘧啶都可对DNA染色,原理是卡在分子中,DNA的离心和电泳显色可用它们。

DNA和RNA的鉴别染色

利用吖啶橙的变色特性可鉴别DNA和RNA。吖啶橙作为一种荧光染料已被用于染色固定,非固定细胞核酸,或作溶酶体的一种标记。观察亡细胞荧光变色性变化以及区别分裂细胞和静止细胞群体。虽然测定DNA和RNA含量时较难获得好的重复性结果,但该方法已被许多实验室广泛采用。

5.溶解性:都溶于水而不溶于乙醇,因此,常用乙醇来沉淀溶液中的DNA和RNA。DNA溶于苯酚而RNA不溶,故可用苯酚来沉淀RNA。

6.紫外吸收:核酸的λm=260nm,碱基展开程度越大,紫外吸收就越厉害。当A=1时,DNA:50ug/ml,RNA和单链DNA:40ug/ml,寡核苷酸:20ug/ml。用A260/A280还可来表示核酸的纯度。

7.沉降速度:对于拓扑异构体(核苷酸数目相同的核酸),其沉降速度从达到小依次为:RNA ; 超螺旋DNA > 解链环状DNA ; 松弛环状DNA ; 线形DNA也就是在离心管中最上层是线形DNA,最下面是RNA。

8.电泳:核苷酸、核酸均可以进行电泳,泳动速度主要由分子大小来决定,因此,电泳是测定核酸分子量的好方法。

9.DNA分子量测定最直接的方法:用适当浓度的EB(溴嘧啶)染色DNA,可以将其他形式的DNA变成线形DNA,用电镜测出其长度,按B-DNA模型算出bp数,根据核苷酸的平均分子量就可计算出DNA的分子量。

将植物组织匀浆后悬浮在等渗介质中进行差速离心,是分离细胞器的常用方法。一个颗粒在离心场中的沉降速率取决于颗粒的大小、形状、稠密度,也与离心力以及悬浮介质的粘度有关。在一给定的离心场中,同一时间内,密度和大小不同的颗粒其沉降速率不同。依次增加离心力和离心时间,就能够使非均一悬浮液中的颗粒按其大小、密度先后分批沉降在离心管底部,分批收集即可获得各种亚细胞组分。叶绿体的分离应在等渗溶液(0.35mol/L 氯化钠或0.4mol/L 蔗糖溶液)中进行,以免渗透压的改变使叶绿体受到损伤。将匀浆液在1000 r/min 的条件下离心2min,以去除其中的组织残渣和一些末被破碎的完整细胞。然后在3000 r/min的条件下离心5min,即可获得沉淀的叶绿体(混有部分细胞核)。分离过程最好在0~4℃的条件下进行;如果在室温下,要迅速分离和观察。

2. 某些物质一定短波长的光(如紫外光)的照射下吸收光能进入激发态,由激发态回到基态时,就能在极短的时间内放出比照射光波长更长的光(如可见光),这种光就称为荧光。若停止供能荧光现象立即停止。有些生物体内的物质受激发态光的照射后可以直接发出荧光,称为自发荧光(或直接荧光),如叶绿体的火红色荧光和木质素的**荧光等。这些物质本身不发光,但他它吸收荧光染料后同样也能发出荧光,这种荧光称为次生荧光(或间接荧光),如叶绿体吸附吖啶橙后可以发出桔红色荧光。