吖啶类诱变剂的诱变机理是-吖啶类物质作为一种诱变剂主要引起碱基对的置换
基因突变的名词解释
基因组DNA分子发生的突然的、可遗传的变异现象(gene mutation)。从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。基因虽然十分稳定,能在细胞分裂时精确地复制自己,但这种稳定性是相对的。在一定的条件下基因也可以从原来的存在形式突然改变成另一种新的存在形式,就是在一个位点上,突然出现了一个新基因,代替了原有基因,这个基因叫做突变基因。于是后代的表现中也就突然地出现祖先从未有的新性状。
1个基因内部可以遗传的结构的改变。又称为点突变,通常可引起一定的表型变化。广义的突变包括染色体畸变。狭义的突变专指点突变。实际上畸变和点突变的界限并不明确,特别是微细的畸变更是如此。野生型基因通过突变成为突变型基因。突变型一词既指突变基因,也指具有这一突变基因的个体。
基因突变可以发生在发育的任何时期,通常发生在DNA复制时期,即细胞分裂间期,包括有丝分裂间期和减数分裂间期;同时基因突变和脱氧核糖核酸的复制、DNA损伤修复、癌变和衰老都有关系,基因突变也是生物进化的重要因素之一,所以研究基因突变除了本身的理论意义以外还有广泛的生物学意义。基因突变为遗传学研究提供突变型,为育种工作提供素材,所以它还有科学研究和生产上的实际意义。
基因突变的种类
基因突变可以是自发的也可以是诱发的。自发产生的基因突变型和诱发产生的基因突变型之间没有本质上的不同,基因突变诱变剂的作用也只是提高了基因的突变率。
按照表型效应,突变型可以区分为形态突变型、生化突变型以及致突变型等。这样的区分并不涉及突变的本质,而且也不严格。因为形态的突变和致的突变必然有它们的生物化学基础,所以严格地讲一切突变型都是生物化学突变型。根据碱基变化的情况,基因突变一般可分为碱基置换突变(base substitution和移码突变(frameshift mutation)两大类。
碱基置换突变(subsititution)
指DNA分子中一个碱基对被另一个不同的碱基对取代所引起的突变,也称为点突变(point mutation)。点突变分转换和颠换两种形式。如果一种嘌呤被另一种嘌呤取代或一种嘧啶被另一种嘧啶取代则称为转换(transition)。嘌呤取代嘧啶或嘧啶取代嘌呤的突变则称为颠换(transversion)。由于DNA分子中有四种碱基,故可能出现4种转换和8种颠换。在自然发生的突变中,转换多于颠换。
碱基对的转换可由碱基类似物的掺入造成。例如,5-溴尿嘧啶(5-bromouracil,BU)是一种与胸腺嘧啶类似的化合物,具有酮式和烯醇式两种结构,且两者可以互变,一般酮式较易变为烯醇式。当DNA复制 时,酮式BU代替了T,使A-T碱基对变为A-BU;第二次复制时,烯醇式BU能和G 配对 ,故出现G-BU碱基对;第三次复制时,G和C配对,从而出现G-C碱基对,这样,原来的A-T碱基对就变成G-C碱基对。
碱基对的转换也可由一些化学诱变剂诱变所致。例如,亚硝酸类能使胞嘧啶(C)氧化脱氨变成尿嘧啶(U),在下一 次复制中,U不与G配对,而与A配对;复制结果C-G变为T-A(见右图)。又如,烷化剂中的芥子气和硫酸二乙酯可使G发生乙基化,成为烷基化鸟嘌呤(mG),结果,mG不与C配对,而与T配对,经过复制,G-C变为A-T。
移码突变(translocation)
指DNA片段中某一位点插入或丢失一个或几个(非3或3的倍数)碱基对时,造成插入或丢失位点以后的一系列编码顺序发生错位的一种突变。它可引起该位点以后的遗传信息都出现异常。发生了移码突变的基因在表达时可使组成多肽链的氨基酸序列发生改变,从而严重影响蛋白质或酶的结构与功能。吖啶类诱变剂如原黄素、吖黄素、吖啶橙等由于分子比较扁平,能插入到DNA分子的相邻碱基对之间。如在DNA复制前插入,会造成1个碱基对的插入;若在复制过程中插入,则会造成1个碱基对的缺失,两者的结果都引起移码突变。
缺失突变(deletion)
基因也可以因为较长片段的DNA的缺失而发生突变。缺失的范围如果包括两个基因,那么就好象两个基因同时发生突变,因此又称为多位点突变。由缺失造成的突变不会发生回复突变。所以严格地讲,缺失应属于染色体畸变。
插入突变(insertion)
一个基因的DNA中如果插入一段外来的DNA,那么它的结构便被破坏而导致突变。大肠杆菌的噬菌体Mu-1和一些插入顺序(IS)以及转座子(见转座因子)都是能够转移位置的遗传因子,当它们转移到某一基因中时,便使这一基因发生突变。许多转座子上带有抗药性基因,当它们转移到某一基因中时,一方面引起突变,另一方面使这一位置上出现一个抗药性基因。插入的DNA分子可以通过切离而失去,准确的切离可以使突变基因回复成为野生型基因。这一事件的出现频率并不由于诱变剂的处理而提高。
基因突变的应用
对于人类来讲,基因突变可以是有用的也可以是有害的。
诱变育种
通过诱发使生物产生大量而多样的基因突变,从而可以根据需要选育出优良品种,这是基因突变的有用的方面。在化学诱变剂发现以前,植物育种工作主要采用辐射作为诱变剂;化学诱变剂发现以后,诱变手段便大大地增加了。在微生物的诱变育种工作中,由于容易在短时间中处理大量的个体,所以一般只是要求诱变剂作用强,也就是说要求它能产生大量的突变。对于难以在短时间内处理大量个体的高等植物来讲,则要求诱变剂的作用较强,效率较高并较为专一。所谓效率较高便是产生更多的基因突变和较少的染色体畸变。所谓专一便是产生特定类型的突变型。以色列培育?彩色青椒?关键技术就是把青椒种子送上太空,使其在完全失重状态下发生基因突变来育种。
害虫防治
诱导突变是什么原理
诱发基因突变的因素及其作用机理
(1)物理诱变因素
在多种物理诱变因素中,应用最广泛并且行之有效的是射线.用于诱变的射线包括电离射线和非电离射线.
在诱变研究中,X射线、γ射线、α射线、β射线和中子等都是人们常用的电离射线.最早用于诱变的电离射线是X射线,后来人们发现γ射线的诱变效果比较好,于是γ射线成为人工诱变的首选射线.近年来,人们发现中子的诱变效果也很好,用中子进行诱变的研究日趋增多.电离辐射作用于生物体时,首先从细胞中各种物质的原子或分子的外层击出电子,引起这些物质的原子或分子的电离和激发.当细胞内的染色体或DNA分子在射线的作用下产生电离和激发时,它们的结构就会改变,这是电离辐射的直接作用.此外,电离辐射的能量可以被细胞内大量的水吸收,使水电离,产生各种游离基团,游离基团作用于DNA分子,也会引起DNA分子结构的改变.研究表明,电离辐射诱发基因突变的频率,在一定范围内和辐射剂量成正比;电离辐射有累加效应,小剂量长期照射与大剂量短期照射的诱变效果相同.
紫外线携带的能量很小,穿透力弱,不足以引起物质的电离,属于非电离射线.物质吸收紫外线后,其组成分子由于电子的激发而变成激发分子,结果极易引起分子结构的改变.在紫外线的照射下,DNA分子可能发生多种形式的结构改变,如DNA链的断裂、DNA分子内或分子间交联、DNA和蛋白质交联、胞嘧啶水合作用以及形成嘧啶二聚体等,这些变化都有可能引起基因突变,其中形成嘧啶二聚体(如胸腺嘧啶二聚体)是引起突变的主要原因.例如,DNA双链之间胸腺嘧啶二聚体的形成,会阻碍双链的分开和下一步的复制.同一条链上相邻胸腺嘧啶之间二聚体的形成,会阻碍碱基的正常配对和腺嘌呤的正常加入,使复制在这个点上停止或发生错误,于是新形成的链上便出现改变了的碱基顺序,在随后的复制过程中就会产生一个在两条链上碱基顺序都改变了的分子,从而导致基因突变.
(2)化学诱变因素
一些化学物质和辐射一样能够引起生物体发生基因突变.通过对上千种化学物质的诱变作用进行研究,发现从简单的无机物到复杂的有机物,金属离子、生物碱、生长刺激素、抗生素、农药、灭菌剂、色素、染料等都可以诱发突变,但是诱变效果好的种类并不多.根据化学诱变剂对DNA作用方式的不同,可以将它们分为以下三类.
一类是能够改变DNA化学结构的诱变剂,如亚硝酸和烷化剂等.亚硝酸具有氧化脱氨作用,它能使腺嘌呤(A)脱去氨基变成次黄嘌呤(H),胞嘧啶(C)脱去氨基变成尿嘧啶(U).在DNA分子第一次复制时,H与C配对,U与A配对.第二次复制时,C与G配对,A与T配对.于是,经过两次复制,原来的A—T碱基对就变成了G—C碱基对,而G—C碱基对却变成了A-T碱基对.
常见的烷化剂有硫酸二乙酯、乙烯亚胺、甲基磺酸乙二酯、亚硝基甲基脲等.烷化剂有一个或几个不稳定的烷基,能够与DNA分子的碱基发生化学反应,置换其中某些基团的氢原子,从而改变碱基的化学结构,使DNA分子复制时出现碱基配对的差错,最终导致基因突变.
一类是碱基类似物,它们的分子结构与DNA分子中的碱基十分相似.在DNA分子复制时,这些碱基类似物能够以假乱真,作为DNA的组成成分加入到DNA分子中,从而引起基因突变.常见的碱基类似物有5-溴尿嘧啶、2-氨基嘌呤等.
还有一类是吖啶类化合物,它们可以插入DNA分子结构中,使DNA分子在复制或转录时出现差错而导致突变.
(3)生物诱变因素
这类因素很简单,某些病毒和细菌,一些逆转录病毒,如乙肝病毒将其自身的DNA导入到人细胞DNA 中,引起基因突变.
诱导基因突变的常用方法
基因突变可以是自发的,也是可以诱导的,诱导因素有物理因素和化学因素,物理因素主要有电离辐射,紫外线,X射线,等,化学因素主要是一些诱变剂,如吖啶染料,秋水仙素,叠氮化合物等。
自发突变主要是由于自身基因复制时的小概率的错配,也可能是受到宇宙背景辐射的影响。
基因突变是进化的动力,但是,基因突变并不总是进化的,因为基因突变是多方向的,随机的,所以大部分突变都是对生物不利的,甚至是致的,当然也有一部分突变是进化的,这种有利突变在长期的自然选择中被保留了下来,变异是进化的根本原因,但不是每一次变异都是进化的。
下列哪种突变可引起移码突变 A.转换和颠换 B.颠换 C.点突变 D.缺失 E.倒位
诱导基因突变的常用方法:
一、碱基置换突变
可以通过两个途径即碱基结构类似物的参入和诱变剂或射线引起的化学变化来进行。
① 类似物的参入 5-溴尿嘧啶(BU)是胸腺嘧啶的结构类似物。它只是在第5位碳原子上以溴原子代替了胸腺嘧啶的甲基(─GH3),并且因此更易以烯醇式出现(图2)。基因突变
大肠杆菌在含有BU的培养基中培养后,细菌的 DNA中的一部分胸腺嘧啶被BU所取代,并且最后在培养物中可以发现有少数突变型细菌出现,取代BU的量愈大则突变型愈多。突变型细菌在不含有BU的培养基中长久培养时,不改变它的突变型性状,可是把突变型细菌在含有BU的培养基中培养后,又可以发现少数由于发生回复突变而出现的野生型细菌。BU的诱变作用可以表示。首先在DNA复制过程中酮式的BU代替了胸腺嘧啶T而使A:T碱基对变为A:BU,在下一次DNA复制中烯醇式的BU*和鸟嘌呤G配对而出现G∶BU碱基对,最后在又一次复制中鸟嘌呤G和胞嘧啶C配对而终于出现G:C碱基对,完成了碱基的置换。这里BU所起的作用是促成这一置换,起促成作用的原因是由于嘧啶的 5位上溴原子代替了甲基后便较多地出现烯醇式的嘧啶。
同一理论还可以用来说明 BU是怎样诱发 的置换突变或者突变型的回复突变(图4)
2-氨基嘌呤等其他碱基结构类似物同样具有诱变作用。
②药物或射线引起的化学变化 亚硝酸能够作用于腺嘌呤(A)的氨基而使它变为次黄嘌呤(HX);可以作用于胞嘧啶(c)而使它变为尿嘧啶(U)。这两种氨基到酮基的变化带来碱基配对关系的改变,从而通过 DNA复制而造成A∶T→G∶C或者 G∶C→A∶T置换。
羟胺只和胞嘧啶发生专一性的反应,所以它几乎只诱发置换G∶C→A∶T而不诱发A∶T→G∶C置换。此外,pH值低或高温都可以促使DNA分子失去碱基特别是嘌呤,导致碱基置换。
紫外线的照射使 DNA分子上邻接的碱基形成二聚体,主要是胸腺嘧啶二聚体T-T。二聚体的形成使DNA双链呈现不正常的构型(见DNA损伤修复),从而带来致效应或者导致基因突变,其中包括多种类型的碱基置换。
二、移码突变
诱发移码突变的诱变剂种类较少,主要是吖啶类染料(图6)。这些染料分子能够嵌入DNA分子中,从而使DNA复制发生差错而造成移码突变。
三、定向诱变
利用重组DNA技术使DNA分子在指定位置上发生特定的变化,从而收到定向的诱变效果。例如将DNA分子用某一种限制性核酸内切酶处理,再用分解DNA单链的核酸酶S1处理,以去除两个粘性末端的单链部分,然后用噬菌体T4连接酶将两个平头末端连接起来,这样就可得到缺失了相应于这一限制性内切酶的识别位点的几个核苷酸的突变型。相反地,如果在四种脱氧核苷三磷酸(dNTP)存在的情况下加入 DNA多聚酶Ⅰ,那么进行互补合成的结果就得到多了相应几个核苷酸的两个平头末端。在T4接连酶的处理下,便可以在同一位置上得到几个核苷酸发生重复的突变型。
在指定的位置上也可以定向地诱发置换突变。诱变剂亚硫酸氢钠能够使胞嘧啶脱氨基而成为尿嘧啶,但是这种作用只限于 DNA单链上的胞嘧啶而对于双链上的胞嘧啶则无效。用识别位点中包含一个胞嘧啶的限制性内切酶处理DNA分子,使粘性末端中的胞嘧啶得以暴露(例如HindⅢ的识别位点是,经限制酶HindⅢ处理后得到粘性末端,中间的这一胞嘧啶便暴露了)。经亚硫酸氢钠处理后胞嘧啶(c)变为尿嘧啶(U)。通过DNA复制原来的碱基对C∶G便转变成为 T∶A。这样一个指定位置的碱基置换突变便被诱发。
还可以把人工合成的低聚核苷酸片段引入基因组中,以一定的方式改变某一基因等。
什么是基因突变?突变的分子基础是什么?
D。
移码突变是诱变剂使DNA序列中的一个或少数几个核苷酸发生增添(插入)或缺失,从而使该处后面的全部遗传密码的阅读框架发生改变,并进一步引起转录和转译错误的一类突变。
需要明确的一点是该突变仅针对突变发生处的编码基因,即仅作用于该开放阅读框内的基因,是一种点突变,其结果只涉及有关基因中突变点后面的遗传密码阅读框架发生错误,因此除涉及这一基因外,并不影响突变点后其他基因的正常读码。
扩展资料:
在移码突变中,如果所形成的错误密码中包含有终止密码,则肽链还会缩短,而产生一个无功能的肽链片段。发生移码突变后由于基因所编码的蛋白质活性改变较大,所以较易成为致性突变。?
在自发突变中,移码突变占很大比例。移码突变所造成的DNA损伤一般远远大于点突变。已知能诱发移码突变的诱变剂是吖啶类染料,如吖啶黄、吖啶橙、2-氨基吖啶等。
百度百科-移码突变
诱变的化学诱变
基因突变是指基因组DNA分子发生的突然的可遗传的变异。从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。
分子基础:
一、自发突变(spontaneous mutation)
自发突变可能由复制错误、DNA损伤和转座作用等引起。
1.DNA复制错误(errors of DNA replication)
DNA碱基有互变异构体,造成DNA复制过程中的DNA错配。
(1)转换:Purine→ Pu;或者 Pyrimidine→ Py
(2)颠换:Pu →Py; 或者Py→Pu
(3)移码突变:增加或减少几个碱基,导致蛋白质翻译错位。
(4)缺失和重复:大片段碱基的缺失或重复,如E.coli乳糖发酵调节基因lacⅠ中四碱基重复序列。
野生型: 5‘-GTCTGGCTGGCTGGC-3’
突变型FS5: 5‘-GTCTGGCTGGCTGGCTGGC-3’
突变型FS2: 5‘-GTCTGGCTGGC-3’
2、DNA损伤(lesions)
(1)脱嘌呤 由于碱基和脱氧核糖间的糖苷键受到破坏,从而引起一个鸟嘌呤或腺嘌呤从DNA分子上脱落下来.
(2)脱氨基 C脱氨基变成U;A脱氨基变成H,:
A A?T →→ → H-T→→→ H-C→→→ H-C
↘→A-T ↘→G-C
B G?C →→ → G-U→→→ A-U→→→A-U
↘→G-C ↘→A-T
造成转换
(3)氧化损伤(oxidative lesions): O2- OH- H2O2
可对DNA造成损伤
二、诱发突变(induced mutaion)
多种理化因素都可以诱导DNA的突变:
1、诱变机制
(1)碱基类似物 例:5-BU 和5-BrdU是胸腺嘧啶(T)的结构类似物,酮式结构易与A配对;烯醇式结构易与G配对。另有2-氨基嘌呤(2-AP, A类似物)、5- 氟尿嘧啶、5-氯尿嘧啶等。
(2) 特异性错配 例烷化剂: 甲磺酸乙酯(EMS)、亚硝基胍( NG)、芥子气等。通过改变碱基结构使碱基错配。
如:G-C; 当G烷基化后可与T配对,导致碱基转换。
或者烷化剂使嘌呤脱落,造成转换、颠换、断裂或其他突变
子 (3) 嵌合剂的致突作用
例 .吖啶类染料: 吖啶橙、吖啶黄素、原黄素等碱基对的类似物,易造成移码突变。
(4) 辐射诱导效应
①紫外线UV:形成嘧啶二聚体,如T二聚体,①同一条单链内,影响复制时与A的配对,使复制中止;②双链之间,影响双链变性,并影响复制。
重复、缺失、移码突变
②电离辐射:如X-ray、可引起碱基的降解或脱落,A变成H;C变成T,出现转换。
物理——物理化学——生物化学——大分子损伤
ⅴ黄曲霉的作用
使鸟嘌呤G脱落,SOS修复引入A, 造成突变。
2、碱基替换的遗传效应
(ⅰ) 同义突变(samesense mutation)不改变氨基酸的密码子变化,与密码子的兼并性有关. 如GAU/GAC—Asp.
(ⅱ) 错义突变(missense mutation) 碱基替换的结果引起氨基酸序列的改变.
(ⅲ) 无义突变(nonsense mutation)编码区的单碱基突变导致终止密码子(UAG/UGA/UAA)的形成, 使 mRNA的翻译提前终止, 形成不完全的肽链.
如镰刀型贫血症:血红蛋白B链(146Aa),6号氨基酸的替换, 导致明显的表型症状。Glu→Val, 若Glu →Asp则影响较小。
3、码突变及其产生
在基因的外显子中插入或缺失1, 2或4个核苷酸,使阅读信息发生错位,从而使翻译的蛋白质序列与原来完全不同. eg. E.coli中乳糖发酵的调节基因(lacⅠ):
野生型: 5‘-GTCTGGCTGGCTGGC-3’
移码突变Ⅰ: 5‘-GTCTGGCTGGCTGGCTGGC-3’
移码突变 Ⅱ: 5‘-GTCTGGCTGGC-3’
4、突变热点和增变基因
基因中某些位点比其它位点突变率高,称突变热点。
例 分析T4-Phage r Ⅱ基因1500个突变体: r ⅡA (1800bp)有200个位点; r ⅡB (850bp)有108个位点 。
形成原因:
(1)、 5-MeC的存在,5-甲基胞嘧啶(MeC)脱氨基后变成T, 使G-C部位转变成A-T部位;
(2)短的重复序列的存在,容易配对错位,造成重复或缺失
(3)与诱变剂类型有关,不同诱变剂出现不同的热点。
( 4)增变基因(mutator gene):该基因的突变会使整个基因组的突变频率增高,例 A. DNA多聚酶基因,突变后使多聚酶的3’ → 5’校正功能降低或丧失,使基因组突变频率增高;
B. dam基因,突变后使碱基的错配修复功能降低或丧失,使基因组突变频率增高。
三、诱变与肿瘤
肿瘤的形成与否取决于机体中癌基因和抑癌基因的平衡,抑癌基因突变会致癌。一些诱变剂可以特异性的诱导抑癌基因突变,导致肿瘤发生。eg. 黄曲霉素、UV(ultraviolet)等。
黄曲霉素可诱导P53基因G → T颠换,导致肝癌的发生;
UV可诱导P53基因5’ -TC-3’发生C → T颠换,形成“T二聚体”,导致人类鳞状细胞皮肤癌的发生。
四、定点诱变
定义:利用人工合成的寡核苷酸,在离体的条件下,制造基因中任何部位的位点特异性突变的技术。
反义遗传学(reverse genetics):合成—连接(单链M13)—复制—转化—检测
基因突变是什么意思?
化学诱变剂主要有烷化剂(包括EMS、EI、NEU、NMU、DES、MNNG、NTG等),天然碱基类似物,氯化锂、亚硝基化合物、叠氮化物、碱基类似物、抗生素、羟胺和吖啶等嵌入染料。 烷化剂通常带有1个或多个活性烷基,此基团能够转移到其它电子密度高的分子上去,使碱基许多位置上增加了烷基,从而在多方面改变氢键的能力。例如EMS被证明是最为有效而且负面影响小的诱变剂。与其他烷化诱变剂类似,是通过与核苷酸中的磷酸、嘌呤和嘧啶等分子直接反应来诱发突变。EMS诱发的突变主要通过两个步骤来完成,首先鸟嘌呤的O6位置被烷基化,成为一个带正电荷的季铵基团,从而发生两种遗传效应:一是烷化的鸟嘌呤与胸腺嘧啶配对,代替胞嘧啶,发生转换型的突变;二是由于鸟嘌呤的N27烷基活化,糖苷键断裂造成脱嘌而后在DNA复制过程中,烷基化鸟嘌呤与胸腺嘧啶配对,导致碱基替换,即G∶C变为A∶T。当然,化学诱变存在着染色体结构和数量方面的诱导变异,但这种单一碱基对改变而形成的点突变仍是化学诱变的主要形式。另外,诱变剂也可与核苷结构的磷酸反应,形成酯类而将核苷酸从磷酸与糖分子之间切断,产生染色体的缺失。这些DNA结构上的变化都可能促使不表达的基因或区段被激活,而表现出被掩盖的性状。
另外NTG也是最有效,用得最广泛的化学诱变剂之一.依靠NTG诱发的突变主要是GC—AT转换,另外还有小范围切除、移码突变及GC对的缺失.在自然条件下NTG容易分解,而在酸性(PH5.5)条件下会产生HNO2.虽然HNO2本身就是诱变剂,但在NTG有活性时(PH6~9),它却无诱变效果.在碱性条件下,NTG会形成重氮甲烷(CH2N2),它是引起致和突变的主要原因.它的效应很可能是CH2N2对DNA的烷化作用引起的[6]。 如吖啶橙、溴化乙锭(EB)等可插入到DNA碱基对之间的染料,被称作嵌入燃料,也是较强的诱变剂,能造成两条链错位或移码突变。
基因突变是指DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变,叫基因突变(gene mutation)。它包括单个碱基改变所引起的点突变(point mutation),或多个碱基的缺失、重覆和插入。
在自然条件下发生的突变叫自发突变,由人工利用物理因素或化学药剂诱发的突变叫诱发突变。基因突变是生物变异的主要原因,是生物进化的主要因素。在生产上人工诱变是产生生物新品种的重要方法。
碱基置换突变:由一个错误的碱基对替代一个正确的碱基对的突变叫碱基置换突变。例如在DNA分子中的GC碱基对由CG或AT或TA所代替,AT碱基对由TA或GC或CG所代替。碱基替换过程只改变被替换碱基的那个密码子,也就是说每一次碱基替换只改变一个密码子,不会涉及到其他的密码子。引起碱基置换突变的原因和途径有两个。一是碱基类似物的掺入,例如在大肠杆菌培养基中加入5-溴尿嘧院(BU)后,会使DNA的一部分胸腺嘧啶被BU所取代,从而导致AT碱基对变成GC碱基对,或者GC碱基对变成AT碱基对。二是某些化学物质如亚硝酸、亚硝基胍、硫酸二乙酯和氮芥等,以及紫外线照射,也能引起碱基置换突变。
移码突变:基因中插入或者缺失一个或几个碱基对,会使DNA的阅读框架(读码框)发生改变,导致插入或缺失部位之后的所有密码子都跟着发生变化,结果产生一种异常的多肽链。移码突变诱发的原因是一些像吖啶类染料分子能插入DNA分子,使DNA复制时发生差错,导致移码突变。
根据遗传信息的改变方式,基因突变又可以分为同义突变、错义突变和无义突变三种类型。
基因突变的特点:
基因突变作为生物变异的一个重要来源,它具有以下主要特点:
第一,基因突变在生物界中是普遍存在的。无论是低等生物,还是高等的动植物以及人,都可能发生基因突变。基因突变在自然界的物种中广泛存在。例如,棉花的短果枝、水稻的矮杆、糯性,果蝇的白眼、残翅,家鸽羽毛的灰红色,以及人的色肓、糖尿病、白化病等遗传病,都是突变性状。自然条件下发生的基因突变叫做自然突变,人为条件下诱发产生的基因突变叫做诱发突变。
第二,基因突变是随机发生的。它可以发生在生物个体发育的任何时期和生物体的任何细胞。一般来说,在生物个体发育的过程中,基因突变发生的时期越迟,生物体表现突变的部分就越少。例如,植物的叶芽如果在发育的早期发生基因突变,那么由这个叶芽长成的枝条,上面着生的叶、花和果实都有可能与其他枝条不同。如果基因突变发生在花芽分化时,那么,将来可能只在一朵花或一个花序上表现出变异。
基因突变可以发生在体细胞中,也可以发生在生殖细胞中。发生在生殖细胞中的突变,可以通过受精作用直接传递给后代。发生在体细胞中的突变,一般是不能传递给后代的。
第三,在自然状态下,对一种生物来说,基因突变的频率是很低的。据估计,在高等生物中,大约十万个到一亿个生殖细胞中,才会有一个生殖细胞发生基因突变,突变率是105~108。不同生物的基因突变率是不同的。例如,细菌和噬菌体等微生物的突变率比高等动值物的要低。同一种生物的不同基因,突变率也不相同。例如,玉米的抑制色素形成的基因的突变率为1.06×10-4,而**胚乳基因的突变率为2.2×10-6.
第四,大多数基因突变对生物体是有害的,由于任何一种生物都是长期进化过程的产物,它们与环境条件已经取得了高度的协调。如果发生基因突变,就有可能破坏这种协调关系。因此,基因突变对于生物的生存往往是有害的。例如,绝大多数的人类遗传病,就是由基因突变造成的,这些病对人类健康构成了严重威胁。又如,植物中常见的白化苗,也是基因突变形成的。这种苗由于缺乏叶绿素,不能进行光合作用制造有机物,最终导致亡。但是,也有少数基因突变是有利的。例如,植物的抗病性突变、耐旱性突变、微生物的抗药性突变等,都是有利于生物生存的。
第五,基因突变是不定向的。一个基因可以向不同的方向发生突变,产生一个以上的等位基因。例如,控制小鼠毛色的灰色基因(A+)可以突变成**基因(AY)。也可以突变成黑色基因(a).但是每一个基因的突变,都不是没有任何限制的。例如,小鼠毛色基因的突变,只限定在色素的范围内,不会超出这个范围。
例如英国女王维多利亚家族在她以前没有发现过血友病的病人,但是她的一个儿子患了血友病,成了她家族中第一个患血友病的成员。后来,又在她的外孙中出现了几个血友病病人。很显然,在她的父亲或母亲中产生了一个血友病基因的突变。这个突变基因传给了她,而她是杂合子,所以表现型仍是正常的,但却通过她传给了她的儿子。基因突变的后果除如上所述形成致病基因引起遗传病外,还可造成胎、自然流产和出生后天折等,称为致性突变;当然也可能对人体并无影响,仅仅造成正常人体间的遗传学差异;甚至可能给个体的生存带来一定的好处。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。