溴丙酮制备-溴丙酮系统命名方法有哪些呢
一、泄漏处置
疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,切断火源。应急处理人员戴自给式呼吸器,穿全身式连体防化服。不要直接接触泄漏物,在确保安全情况下堵漏。喷雾状水,减少蒸发。用砂土或其它不燃性吸附剂混合吸收,然后收集运至废物处理场所。如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。
二、防护措施
工程控制:严加密闭,提供充分的局部排风和全面排风。
呼吸系统防护:可能接触其蒸气时,建议佩戴防毒面具。高浓度环境中,应该佩戴自给式呼吸器。
眼睛防护:戴化学安全防护眼镜。
防护服:穿聚乙烯薄膜防毒服。
手防护:戴防护手套。
其它:工作现场严禁吸烟、进食和饮水。工作后,淋浴更衣。注意个人清洁卫生。
三、急救措施
皮肤接触:脱去污染的衣着,用流动清水冲洗15分钟。如有灼伤,按灼伤处理。
眼睛接触:立即翻开上下眼睑,用流动清水冲洗15分钟。就医。
吸入:脱离现场至空气新鲜处。呼吸停止时,立即进行人工呼吸。就医。
食入:误服者给饮牛奶或蛋清,就医。
灭火方法:雾状水、泡沫、二氧化碳、干粉、砂土。
1溴丙酮和苯反应
1. _ 掌握羧基的结构和羧酸的化学性质
2._掌握诱导效应和共轭效应对羧酸酸性的影响
3._ 掌握羧酸的制备方法
4, 了解重要的羧酸的主要用途
5._ 了解二元羧酸取代羧酸的特性反应
学习要求
学习内容
羧酸化合物的简介
羧酸的分类,命名和结构
羧酸的物理性质和光谱性质
羧酸的化学性质
羧酸的来源和制备
重要的一元羧酸
二元羧酸
取代酸
酸碱理论
化学性质一览表
羧酸可看成是烃分子中的氢原子被羧基(-COOH)取代而生成的化合物.其通式为RCOOH.羧酸的官能团是羧基.
布洛芬
阿司匹林
羧酸是许多有机物氧化的最后产物,它在自然界普遍存在(以酯的形式),在工业,农业,医药和人们的日常生活中有着广泛的应用.
羧酸化合物的简介
故羧基的结构为一 P-π共轭体系
_
第一节 羧酸的分类,命名和结构
一,结构
当羧基电离成负离子后,氧原子上带一个负电荷,更有利于共轭,故羧酸易离解成负离子
_
由于共轭作用,使得羧基不是羰基和羟基的简单加合,所以羧基中既不存在典型的羰基,也不存在着典型的羟基,而是两者互相影响的统一体.
羧酸的性质可从结构上预测,有以下几类:
还原反应
二,命名
1,俗名
酒石酸 马来酸
蚁酸,
蚁酸 安息香酸 草酸 琥珀酸(丁二酸)
柠檬酸(3—羟基—3—羧基戊二酸)
肉桂酸(3—苯基丙烯酸)
()
a.含羧基的最长碳链作为母体,按照主链碳原子数目命名为'某'酸 .
b.编号.从羧基C原子开始编号.(用阿拉伯数字或希腊字母.)
c. 如有不饱和键要标明烯(或炔)键的位次.并主链包括双键和叁键.将取代基的位次,数目,名称依次写在母体名称前面.,数目,名称依次写在母体前面
d. 脂环族羧酸.简单的在脂环烃后加羧酸二字,复杂的环可作为取代基.
e.芳香酸可作脂肪酸的芳基取代物命名.
f.多元羧酸:选择含两个羧基的碳链为主链,按C原子数目称为某二酸.
2,系统命名法
-乙氧基乙酸
4-甲基-4-苯基-2-戊烯酸
丙醛酸
(3-氧代丙酸或3-羰基丙酸)
3-丁酮酸
(3-氧代丁酸或乙酰乙酸)
(1R, 3R)-1,3-环己烷二羧酸
三,分类
1.按烃基的种类可分为:
a.脂肪族羧酸:饱和羧酸,不饱和羧酸
b,脂环族羧酸
c,芳香酸
2.按羧基数目可分为:一元羧酸,二元羧酸,多元羧酸_
_
饱和酸
不饱和酸
芳香酸
一元酸
乙酸
丙烯酸
苯甲酸
二元酸
乙二酸
顺丁烯二酸
邻二苯甲酸
溶解度
羧酸的物理性质
物态:C1~C3 有刺激性酸味的液体,溶于水.
C4~C9 有酸腐臭味的油状液体,难溶于水.
> C9 腊状固体,无气味.
二元羧酸,芳酸为晶体 .
羧酸是极性分子,能与水形成氢键,故低级一元酸(C1~C4)可与水互溶,但随分子量↑,在水中的溶解度↓,从正戊酸开始在水中的溶解度只有3.7 %,>C10的羧酸不溶于水.二元酸易溶于水,芳酸的溶解度也很小.苯甲酸的溶解度为 0.34g / 100gH2O
熔,沸点
①熔点:一元羧酸从C6开始,随分子量↑,呈锯齿形上升.偶数碳原子羧酸的m.p>相邻两个同系物的m.p.出现熔点双曲线.主要是偶数碳的对称性高,分子在晶体中排列整齐,晶格能较大,熔点较高.
②沸点
直链饱和一元羧酸的沸点较分子量相近的醇要高.如:甲酸,乙醇分子量均为46,沸点为100.5℃,78.3℃;乙酸,丙醇分子量为60,沸点为117.9℃,97.2℃.
主要原因为:羧酸以氢键彼此缔合, a) 此键键能大于醇之间氢键的键能.(酸中的氢键键能: 30kJ / mol ,醇中氢键键能:25kJ / mol .)b) 低级酸在蒸汽中也是以二聚体存在,所以沸点高.
IR:反映出-C=O和-OH的两个官能团
RCH2COOH R2CHCOOH
1HNMR:RCOOH
羧酸的光谱性质
羧酸的化学性质
由于共轭作用,使得羧基不是羰基和羟基的简单加合,所以羧基中既不存在典型的羰基,也不存在着典型的羟基,而是两者互相影响的统一体.
羧酸的性质可从结构上预测,有以下几类:
一,酸性
二,羧基上的羟基(OH)的取代反应
三,脱羧反应
四,α-H的卤代反应
五,羧酸的还原
羧酸的酸性比水,醇强,甚至比碳酸的酸性还要强.
羧酸离解后生成的RCOO- 负离子,由于共轭效应的存在,氧原子上的负电荷则均匀地分散在两个原子上,因而稳定,容易生成.
一,酸性
羧酸的酸性表现在:
羧酸能与碱作用成盐,也可分解碳酸盐.
此性质可用于醇,酚,酸的鉴别和分离,不溶于水的羧酸既溶于NaOH也溶于NaHCO3,不溶于水的酚能溶于NaOH不溶于NaHCO3,不溶于水的醇既不溶于NaOH也溶于NaHCO3.含羧基的有机物,在碱中可增加水溶性.如:青霉素G是含羧基的有机物,不溶于水.一般制成钾钠盐增加水溶性,易于吸收.
影响羧酸酸性强度的因素
1,电子效应对酸性的影响
2,取代基位置对苯甲酸酸性的影响
3,场效应的影响
1,电子效应对酸性的影响
1°吸电子诱导效应使酸性增强.
FCH2COOH > ClCH2COOH > BrCH2COOH > ICH2COOH > CH3COOH
pKa值 2.66 2.86 2.89 3.16 4.76
2°供电子诱导效应使酸性减弱.
CH3COOH > CH3CH2COOH > (CH3)3CCOOH
pKa值 4.76 4.87 5.05
3°吸电子基增多酸性增强.
ClCH2COOH > Cl2CHCOOH > Cl3CCOOH
pKa值 2.86 1.29 0.65
1)诱导效应
2) 共轭效应 当羧基能与其他基团共轭时,则酸性增强
4°吸电子基的位置距羧基越远,酸性越小.
CH3COOH +C
④ (OH) -I RCH2OH > R2CHOH > R3COH
醇相同时 HCOOH > CH3COOH > RCH2COOH > R2CHCOOH > R3CCOOH
(3) 成酯方式
酯化时,羧酸和醇之间脱水可有两种不同的方式:
究竟按哪种方式脱水,与羧酸和醇的结构及反应条件有关.经同位素标记醇的办法证实:
Ⅰ 伯醇和仲醇与羧酸的酯化是按酰氧键断裂进行的.
Ⅱ 叔醇与羧酸的酯化是按烷氧键断裂进行的.
H2O中无O18,说明反应为酰氧断裂.
(4)酯化反应历程
1°,2°醇为酰氧断裂历程,
3°醇(叔醇)为烷氧断裂历程.
CH3COOH + SOCl2 CH3COCl + SO2 + HCl
亚磷酸不易挥发,故该法适用于制备低沸点酰氯.
磷酰氯沸点较低(105.3℃),故适用于制备高沸点酰氯
该法的副产物均为气体,有利于分离,且产率较高.
2.酰卤的生成
羧酸与PX3,PX5,SOCl2作用则生成酰卤.
因乙酐能较迅速的与水反应,且价格便宜,生成的乙酸有易除去,因此,常用乙酐作为制备酸酐的脱水剂.
1,4和1,5二元酸不需要任何脱水剂,加热就能脱手生成环状(五元或六元)酸酐.
3.酸酐的生成
羧酸在脱水剂作用下加热,脱水生成酸酐.
不对称酸酐用羧酸盐与酰氯反应制备
例如:
_
二元酸的二铵盐受热则发生分子内脱水兼脱氨,生成五元或六元环状酰亚胺.
4.酰胺的生成
在羧酸中通入氨气或加入RNH2,R2NH ,可得到羧酸铵盐,铵盐热解失水而生成酰胺.
_
_
三,脱羧反应
羧酸在一定条件下受热可发生脱羧反应.
饱和一元羧酸在加热下较难脱羧,但低级羧酸的金属盐在碱存在下加热则可发生脱羧反应.
洪塞迪克尔(Hunsdiecker)反应:羧酸的银盐在溴或氯存在下脱羧生成卤代烷的反应.
_此反应可用来合成比羧酸少一个碳的卤代烃.
羧酸与 HgO + Br2 也可得卤烃,称为 克利斯脱反应
羧酸与 (CH3COO)4Pb ·LiCl得氯代烃 称为 柯奇反应
一元羧酸的α碳原子上连有-NO2,-C≡N,
-CO-,-Cl 等强吸电子集团时,易发生脱羧.
某些芳香族羧酸不但可以脱羧,且比饱和一元酸容易.
现可采用气相催化脱羧有羧酸直接来制备酮.
电解羧酸盐溶液可在阳极发生烷基的偶合,生成烃,
该反应称为Kolbe反应.
Kolbe反应用于二元酸单酯电解生成长链二元酸酯也
是成功的例子之一.
脂肪族羧酸的α- 氢原子也可被卤原子取代,但其反应活性要比醛,酮低的多,通常要在少量红磷,硫等催化剂存在下方可进行.
控制条件,反应可停留在一取代阶段.
四,α-H的卤代反应
α-卤代酸很活泼,可以进行亲核取代反应和消除反应.如:
羧酸不易被还原.但在强还原剂LiAlH4作用下,羧基可被还原成羟基,生成相应的1°ROH
该法不仅产率高,而且不影响C=C和C≡C的存在,可用于不饱和酸的还原.
五,羧酸的还原
乙硼烷也可将羧基还原为伯醇
羧酸的来源和制备
来源: 羧酸广泛存在与自然界,常见的羧酸几乎都有俗名.自然界的羧酸大都以酯的形式存在于油,脂,(高级脂肪酸甘油酯)蜡(高级脂肪酸高级一元醇酯)中.油,脂,蜡水解后可以得到多种羧酸的混合物.
制法:
一,氧化法
二,羧化法
三,水解法
_
(一)烃的氧化——有α-H的芳烃才能氧化为苯甲酸
(二) 伯醇或醛的氧化——制备同碳数的羧酸
一.氧化法
甲基酮氧化——制备减少一个碳原子 的羧酸
(四) 烯烃,炔烃的氧化——适用于对称烯烃,炔烃和末端烯烃,炔烃
(五) 无α— H 的醛在浓碱中加热,可得酸和醇
环酮可被氧化为内酯,进而被氧化为二酸
(三).酮的氧化
二,羧化法
(一) Grignard试剂与CO2作用——制备增加一个碳原子的羧酸
(二)烯烃羰基化法——制备增加一个碳原子的羧酸
烯烃在Ni(CO)4催化剂的存在下吸收CO和H2O而生成羧酸.
1°,2°,3°RX都可使用.但乙烯式卤代烃难反应.
三,水解法
此法仅适用于1°RX(2°,3°RX 与NaCN作用易发生消除反应).
_
1._
(二)羧酸衍生物的水解
油脂和羧酸衍生物得羧酸,及副产物甘油和醇.
(三)通过乙酰乙酸乙酯,丙二酸二乙酯合成各种羧酸.
(四) Kolbe-Schmitt反应——制备增加一个碳原子酚酸
(一) 腈的水解——制备增加一个碳原子的羧酸
重要的一元羧酸
甲酸
1.结构
2.特性
① 甲酸的酸性显著高于其它饱和一元酸
② 甲酸具有还原性,能发生银镜反应.
③ 甲酸也能使高锰酸钾溶液退色.
④ 甲酸具有杀菌力,可作消毒或防腐剂.
⑤ 甲酸与浓硫酸加热,则分解生成一氧化碳和水.
乙酸 ,苯甲酸
3. 制法
甲酸的水溶液不能用蒸馏的方法得到纯甲酸,要用
无水甲酸钠加入含硫酸的甲酸中蒸馏得到.或
一,物理性质
1.物态 二元羧酸都是固态晶体,熔点比相近分子量的一元羧酸高得多.随碳原子数目的增加,熔点呈下降趋势,偶数碳比奇数为高.
2.溶解度 比相应的一元酸大,易溶于乙醇,难溶于其他有机溶剂.
二,二元羧酸的化学性质
三,重要的二元羧酸
乙二酸(草酸)具有还原性,易被氧化成二氧化碳和水.
己二酸
丁烯二酸
苯二甲酸
二元羧酸
二,二元羧酸的化学性质
1.具有羧酸的通性
对酸性而言 Ka1 > Ka2或 pKa1〈 pKa2
对于顺与反式丁烯二酸
对于酸性:Ka1(顺) 〉Ka1(反) ; Ka2(反)〉Ka2(顺)
顺反式结构在其他物理性质方面也有差异,如:水溶性顺式大于反式(顺式偶极矩大),熔点反式高于顺式(反式对称性高,晶格能大)
2.二元羧酸受热反应的规律
Blanc规则(布朗克) :在可能形成环状化合物的条件下,总是比较容易形成五元或六元环状化合物(即五,六元环容易形成).
(1) 乙二酸,丙二酸受热脱羧生成一元酸
(2)丁二酸,戊二酸受热脱水(不脱羧)生成环状酸酐
(3)己二酸,庚二酸受热既脱水又脱羧生成环酮
3.与二元醇反应
二元酸与二元醇反应可生成环酯(但仅限于五元环或六元环)
也可以生成聚酯.
(1) 乙二酸,丙二酸受热脱羧生成一元酸,
_
(2)丁二酸,戊二酸受热脱水(不脱羧)生成环状酸酐,
(3)己二酸,庚二酸受热既脱水又脱羧生成环酮,
取代羧酸
羧酸分子中烃基上的氢原子被其他原子或子团取代后形成的化合物称为取代酸.
取代酸有卤代酸,羟基酸,氨基酸,羰基酸等,其中卤代酸,氨基酸将在有关章节中讨论,这里只讨论羟基酸和羰基酸.
一,羟基酸
1.制法
2.羟基酸的性质
3.重要的羟基酸 (自学)
二, 羰基酸
分子中含有羰基,有含有羧基的化合物称为羰基酸,如丙酮酸,3-丁酮酸等.
1)卤代酸水解 用碱或氢氧化银处理α,β,γ等卤代酸时可生成对应的羟基酸.
3)列佛尔曼斯基(Reformatsky)反应 制备β-羟基酸的方法.
2) 氰醇水解 制α-羟基酸
1,羟基酸制法
_
具有醇和酸的共性,也有因羟基和羧基的相对位置的互相影响的特性反应.主要表现在受热反应规律上.
_
β-羟基酸受热发生分子内脱水,主要生成α-β
不饱和羧酸.
_
α-羟基酸受热时,两分子间相互酯化,生成交酯.
2.羟基酸的性质
γ-和δ-羟基酸受热,生成五元和六元环内酯.
α-和β-羟基酸还有被氧化后再脱羧的性质
α-和β-羟基酸的降解反应:
这是制备高级脂肪醛酮的方法
_____ 自然界中的羟基酸
① 乳酸:
结构:
存在:酸牛奶(外消旋),蔗糖发酵(左旋的),肌肉中(右旋的).
用途:具有很强的吸湿性;工业上作除钙剂(钙盐不溶于水);食品工业中作增酸剂;钙盐可补钙.
② 苹果酸(α-羟基酸)
结构: _
存在:未成熟的果实内;植物的叶子中;自然界中存在的是左旋体.
用途:制药和食品工业.
③ 洒石酸
结构
_
存在:多种水果中;或以盐的形式存在于水果中.
用途:可用作酸味剂,其锑钾盐有抗血吸虫作用.
④ 柠檬酸
结构:
_
存在:多种植物的果实中;动物组织与体液中,为无色晶体.
用途: 食品工业的调味品(有酸味),也用于制药业.
_
注意:羟基与羧基间的距离大于四个碳原子时,受热则生成长链的高分子聚酯.
α-和β-羟基酸还有羟基被氧化后再脱羧的性质.
讨论: 写出下列反应的产物℃
讨论:下列反应的产物是
1,羰基酸具有羰基和羧酸的典型反应.
2,_ 酮酸的特性反应
α-酮酸与稀硫酸共热时,脱羧生成醛.
β-酮酸受热易脱羧生成酮._
_
二, 羰基酸
酸碱理论
一,布伦斯特酸碱理论
凡是能释放质子的任何分子或离子都是酸.
布伦斯特认为酸碱强度可根据电离常数来比较
HAc Ka=1.7*10-5
H2O Ka=1.8*10-16
二,路易斯酸碱理论
路易斯酸是电子对的接受体
路易斯碱是电子对的给予体
化学性质一览表
酸性与成盐
2. 酸酐的生成
1. 酰卤的生成
羧酸衍生物的生成
如:
α-H 卤代反应
脱 羧 反 应
4. 酰胺的生成
3. 酯的生成
帮我看下这个化学结构式怎么命名这个化学
您问的是溴丙酮和苯反应是什么吗?溴代苯基丙酮:由氯化苄、乙腈格式反应生成。
溴丙酮最重要的有机化学反应是Heck反应,即在过渡金属或贵金属的催化下与其它卤代烃发生偶联,丙酮是一种有机物,分子式为C3H6O,又名二甲基酮,为最简单的饱和酮。是一种无色透明液体,有特殊的辛辣气味,苯是一种有机化合物,为无色油状液体,具有苯的气味。
溴丙酮是一化学品,主要用于有机合成,也用作化学武器。
高二有机化学知识总结
1 化学命名原则
有机化合物数目众多,结构复杂,理想的名称不仅应该表示分子的组成,而且要准确、简便地反映出分子的结构,因此命名法是有机化学的重要内容之一。常见的命名法有普通命名法、系统命名法和衍生物命名法。系统命名法现普遍为各国所采用。1982年在瑞士日内瓦召开的一次国际化学会议上制定了一个有机化合物命名原则,并称之为日内瓦命名法,以后几经修改和补充,1974年在伦敦召开的国际理论与应用化学联合会(International Union of Pure and Applied Chemistry, 简称IUPAC)上又加以修订后,特称为国际系统命名法(IUPAC系统命名法)或简称系统命名法。
我国现在所用的“有机化学命名原则”是在1980年中国化学会根据日内瓦命法及IUPAC系统命名法的原则,结合我国文字特点而制定的。这一方法可以运用于所有一般有机化合物的命名(某些复杂的天然有机化合物另有各自特定的命名方法)。而习惯命名法只适用于含碳原子较少的化合物,有很大的局限性,但它运用正、异、新、伯、仲、叔、季七个字区别异构体的方法,在系统命名法中表示侧链名称时还是有用的,具体命名方法将在以后章节详细介绍,本节着重介绍我国的系统命名法中常用的化学介词。化学介词是代表化合物结构组分结合关系的连缀词。在化合物的命名和结构关系不会混淆时,介词往往可以省略。在可省略的情况下,为了说明目的,介词被括在括号内。下面是我国所用的几个主要介词。
(1)化。表示简单的两个基之间的化合。这个介词往往是省略的。例如,CHCOCl酰氯或氯(化)乙酰;CHCl六氯(化)苯。
(2)代。表示:①取代碳原子上的氢。例如,CHClCHCl 1,2-二氯(代)乙烷。②硫置换碳原子上的氧原子。例如:CHCHCHSH 丙硫醇或硫代丙醇。③硫置换羧基碳原子上的氧原子。例如 乙二硫代酸。 (3)合。表示:①某一化合物与某一基团发生加成作用。例如,丙酮合亚硫酸钠;HNNH·HO水合肼;②分子间的加成化合。例如,CHO·CH(OH)醌合氢醌(氢键缔合)。
(4)聚。表示相同分子的聚合。例如,(CHO)三聚甲醛;(-CH-CH-)聚乙烯。 (5)缩。表示相同或不相同的分子间失去水、醇、氨等小分子。例如,CHCH=NNHCONH乙醛缩氨基脲。
(6)并。表示两个或两个以上的芳环或脂环之间通过两位或多位相互结合形成稠环。例如:
(7)杂。表示其他原子置换了环上碳原子。用于杂环命名法的介词。例如,吡啶的系统命名可称为氮杂苯,又如嘧啶的命名可称为二氮杂苯。
(8)联。表示相同的环烃或杂环彼此以单键或双键直接相连。例如:
(9)叉。表示基上一个原子用二价连于另一原子或两个原子上。例如:
(10)撑。表示一个二价基,其两价在基的两端,分别连接在另外两个原子上。例如, BrCHCHCHBr 丁撑二溴(或1,4-二溴丁烷)。
(11)用。表示基上一个原子用三价连于另一原子或三个原子上。例如,CHCCl 苄用三氯(或苯三氯甲烷)。
随着新化合的不断增加,有机化合物的命名方法将不断地修订和完善。各类有机化合物的具体命名方法将在以后各章中详细讨论。
催泪剂溴丙酮怎样制取
一 有机推断的解题模式、方法和思路
有机推断题属于综合应用各类官能团性质、相互转化关系的知识,结合计算并在新情景下
加以迁移的能力题。只有在熟练掌握各类有机物及相互衍变关系的基础上,结合具体的实
验现象和数据,再综合分析,才能作出正确、合理的推断。
1 有机推断题的解答思维模式:
2 解答有机推断题的常用的解题方法:
①顺推法:以有机物的结构、性质和实验现象为主线,采用
正向思维,得出正确结论。
②逆推法:以有机物结构、性质和实验现象为主线,采用
逆向思维,得出正确结论
③夹击法:从反应物和生成物同时出发,以有机物的结构、性质为主线,推出中间过渡产
物,从而解决问题并得出正确结论。
④分层推理法:依据题意,分层推理,综合结果,得出正确推论。
3 有机推断题的解题思路:
解题的关键是确定突破口。常见的突破口的确定如下:
(1) ?由性质推断?
①能使溴水褪色的有机物通常含有“—C=C—”、“—C≡C—”等。
②能使酸性高锰酸钾溶液褪色的有机物通常含有“—C=C—”或“—C≡C—”、
“—CHO”或为“苯的同系物”。
③能发生加成反应的有机物通常含有“—C=C—”、“—C≡C—”、“—CHO”或“苯环”,
其中“—CHO”和“苯环”只能与H2发生加成反应。
④能发生银镜反应或能与新制的Cu(OH)2悬浊液反应的有机物必含有“—CHO”。
⑤能与钠反应放出H2的有机物必含有“—OH”。
⑥能与Na2CO3或NaHCO3溶液反应放出CO2或使石蕊试液变红的有机物中必含有-COOH。
⑦能发生消去反应的有机物为醇或卤代烃。
⑧能发生水解反应的有机物为卤代烃、酯、糖或蛋白质。
⑨遇FeCl3溶液显紫色的有机物必含有酚羟基。
⑩能发生连续氧化的有机物是有“—CH2OH”的醇。比如有机物A能
发生如下氧化反应:A→B→C,则A应是具有“—CH2OH”的醇,B就是醛,C应是酸。
(2)由反应条件推断
①当反应条件为NaOH醇溶液并加热时,必定为卤代烃的消去反应。
②当反应条件为NaOH水溶液并加热时,通常为卤代烃或酯的水解。
③当反应条件为浓H2SO4并加热时,通常为醇脱水生成醚或不饱化合物,或者是醇与酸的
酯化反应。
④当反应条件为稀酸并加热时,通常为酯或淀粉(糖)的水解反应。
⑤当反应条件为催化剂(铜或银)并有氧气时,通常是醇氧化为醛或醛氧化为酸。
⑥当反应条件为催化剂存在下的加氢反应时,通常为碳碳双键?、碳碳叁键、苯环或醛基
的加成反应。
⑦当反应条件为光照且与X2反应时,通常是X2与烷或苯环侧链烃基上的H原子发生的取代
反应,而当反应条件为催化剂存在且与X2的反应时,通常为苯环上的H原子直接被取代。
(3)由反应数据推断
①根据与H2加成时所消耗H2的物质的量进行突破:1mol—C=C—加成时需1molH2,
1mol—C≡C—完全加成时需2molH2,1mol—CHO加成时需1molH2,而1mol苯环加成时需
3molH2。
②1mol—CHO完全反应时生成2molAg↓或1molCu2O↓。
③2mol—OH或2mol—COOH与活泼金属反应放出1molH2。
④1mol—COOH(足量)与碳酸钠或碳酸氢钠溶液反应放出1molCO2↑。
⑤1mol一元醇与足量乙酸反应生成1mol酯时,其相对分子质量将增加42,1mol二元醇
与足量乙酸反应生成酯时,其相对分子质量将增加84。
⑥1mol某酯A发生水解反应生成B和乙酸时,若A与B的相对分子质量相差42,则生
成1mol乙酸,若A与B的相对分子质量相差84时,则生成2mol乙酸。
(4)由物质结构推断
①具有4原子共线的可能含碳碳叁键。
②具有3原子共面的可能含醛基。
③具有6原子共面的可能含碳碳双键。
④具有12原子共面的应含有苯环。
(5)由物理性质推断
在通常状况下为气态的烃,其碳原子数均小于或等于4,而烃的衍生物中只有
CH3Cl、HCHO在通常情况下是气态。
此外还有:结合断键机理和逆向推理思维分析残基结构、分子式结合不饱和度为突破口。
二 确定有机物同分异构体的数目和结构的方法主要有:
①对称法(根据有机物的结构找出有机物的对称关系,然后确定有机物的同分异构体的
数目,主要包括轴对称、点对称和面对称)
②等效法(利用等效面和等效点的一种方法)
③定一议二法(当取代基的数目较多时固定某些取代基的位置而改变其他取代基位置的
一种方法)
④插空法(主要是根据题目的条件从中提出含两个共价键的原子或原子团,然后确定剩余
部分的结构,最后再将提出的原子或原子团插入到碳碳单键或碳氧单键之间的一种方法)。
注意:有机物同分异构体数目和结构确定的过程中应注意思维的有序性。
有机化学知识点归纳(一)
一、同系物
结构相似,在分子组成上相差一个或若干个CH2原子团的物质物质。
同系物的判断要点:
1、通式相同,但通式相同不一定是同系物。
2、组成元素种类必须相同
3、结构相似指具有相似的原子连接方式,相同的官能团类别和数目。结构相似
不一定完全相同,如CH3CH2CH3和(CH3)4C,前者无支链,后者有支链仍为同系物。
4、在分子组成上必须相差一个或几个CH2原子团,但通式相同组成上相差一个或
几个CH2原子团不一定是同系物,如CH3CH2Br和CH3CH2CH2Cl都是卤代烃,
且组成相差一个CH2原子团,但不是同系物。
5、同分异构体之间不是同系物。
二、同分异构体
化合物具有相同的分子式,但具有不同结构的现象叫做同分异构现象。具有同分异构
现象的化合物互称同分异构体。
1、同分异构体的种类:
⑴ 碳链异构:指碳原子之间连接成不同的链状或环状结构而造成的异构。如
C5H12有三种同分异构体,即正戊烷、异戊烷和新戊烷。
⑵ 位置异构:指官能团或取代基在在碳链上的位置不同而造成的异构。如1—丁烯
与2—丁烯、1—丙醇与2—丙醇、邻二甲苯与间二甲苯及对二甲苯。
⑶ 异类异构:指官能团不同而造成的异构,也叫官能团异构。如1—丁炔与1,
3—丁二烯、丙烯与环丙烷、乙醇与甲醚、丙醛与丙酮、乙酸与甲酸甲酯、葡萄糖
与果糖、蔗糖与麦芽糖等。
⑷ 其他异构方式:如顺反异构、对映异构(也叫做镜像异构或手性异构)等,
在中学阶段的信息题中屡有涉及。
各类有机物异构体情况:
⑴ CnH2n+2:只能是烷烃,而且只有碳链异构。如CH3(CH2)3CH3、
CH3CH(CH3)CH2CH3、C(CH3)4
⑵ CnH2n:单烯烃、环烷烃。如CH2=CHCH2CH3、CH3CH=CHCH3、
CH2=C(CH3)2、 、
⑶ CnH2n-2:炔烃、二烯烃。如:CH≡CCH2CH3、CH3C≡CCH3、
CH2=CHCH=CH2
⑷ CnH2n-6:芳香烃(苯及其同系物)。如: 、 、
⑸ CnH2n+2O:饱和脂肪醇、醚。如:CH3CH2CH2OH、CH3CH(OH)CH3、
CH3OCH2CH3
⑹ CnH2nO:醛、酮、环醚、环醇、烯基醇。如:CH3CH2CHO、CH3COCH3、
CH2=CHCH2OH、
、 、
⑺ CnH2nO2:羧酸、酯、羟醛、羟基酮。如:CH3CH2COOH、CH3COOCH3、
HCOOCH2CH3、HOCH2CH2CHO、CH3CH(OH)CHO、CH3COCH2OH
⑻ CnH2n+1NO2:硝基烷、氨基酸。如:CH3CH2NO2、H2NCH2COOH
⑼ Cn(H2O)m:糖类。如:
C6H12O6:CH2OH(CHOH)4CHO,CH2OH(CHOH)3COCH2OH
C12H22O11:蔗糖、麦芽糖。
2、同分异构体的书写规律:
⑴ 烷烃(只可能存在碳链异构)的书写规律:
主链由长到短,支链由整到散,位置由心到边,排布由对到邻到间。
⑵ 具有官能团的化合物如烯烃、炔烃、醇、酮等,它们具有碳链异构、官能团位置
异构、异类异构,书写按顺序考虑。一般情况是碳链异构→官能团位置异构→异类异构。
⑶ 芳香族化合物:二元取代物的取代基在苯环上的相对位置具有邻、间、对三种。
3、判断同分异构体的常见方法:
⑴ 记忆法:
碳原子数目1~5的烷烃异构体数目:甲烷、乙烷和丙烷均无异构体,丁烷有两种
异构体,戊烷有三种异构体。
碳原子数目1~4的一价烷基:甲基一种(—CH3),乙基一种(—CH2CH3)、
丙基两种(—CH2CH2CH3、—CH(CH3)2)、
丁基四种(—CH2CH2CH2CH3、 、—CH2CH(CH3)2、
—C(CH3)3)
③ 一价苯基一种、二价苯基三种(邻、间、对三种)。
⑵ 基团连接法:将有机物看成由基团连接而成,由基团的异构数目可推断有机物
的异构体数目。
如:丁基有四种,丁醇(看作丁基与羟基连接而成)也有四种,戊醛、
戊酸(分别看作丁基跟 醛基、羧基连接而成)也分别有四种。
⑶ 等同转换法:将有机物分子中的不同原子或基团进行等同转换。
如:乙烷分子中共有6个H原子,若有一个H原子被Cl原子取代所得一氯乙烷
只有一种结构,那么五氯乙烷有多少种?假设把五氯乙烷分子中的Cl原子转换
为H原子,而H原子转换为Cl原子,其情况跟一氯乙烷完全相同,故五氯乙烷
也有一种结构。同样,二氯乙烷有两种结构,四氯乙烷也有两种结构。
⑷ 等效氢法:等效氢指在有机物分子中处于相同位置的氢原子。等效氢任一原子
若被相同取代基取代所得产物都属于同一物质。其判断方法有:
① 同一碳原子上连接的氢原子等效。
② 同一碳原子上连接的—CH3中氢原子等效。如:新戊烷中的四个甲基连接于
同一个碳原子上,故新戊烷分子中的12个氢原子等效。
③ 同一分子中处于镜面对称(或轴对称)位置的氢原子等效。如: 分子中的18个氢原子等效。
三、有机物的系统命名法
1、烷烃的系统命名法
⑴ 定主链:就长不就短。选择分子中最长碳链作主链(烷烃的名称由主链的碳原子数决定)
⑵ 找支链:就近不就远。从离取代基最近的一端编号。
⑶ 命名:
① 就多不就少。若有两条碳链等长,以含取代基多的为主链。
② 就简不就繁。若在离两端等距离的位置同时出现不同的取代基时,简单的取代基
优先编号(若为相同的取代基,则从哪端编号能使取代基位置编号之和最小,就从
哪一端编起)。
③ 先写取代基名称,后写烷烃的名称;取代基的排列顺序从简单到复杂;相同的
取代基合并以汉字数字标明数目;取代基的位置以主链碳原子的阿拉伯数字编号标明
写在表示取代基数目的汉字之前,位置编号之间以“,”相隔,阿拉伯数字与汉字之间
以“—”相连。
⑷ 烷烃命名书写的格式:
2、含有官能团的化合物的命名
⑴ 定母体:根据化合物分子中的官能团确定母体。如:含碳碳双键的化合物,以烯
为母体,化合物的最后名称为“某烯”;含醇羟基、醛基、羧基的化合物分别以醇、
醛、酸为母体;苯的同系物以苯为母体命名。
⑵ 定主链:以含有尽可能多官能团的最长碳链为主链。
⑶ 命名:官能团编号最小化。其他规则与烷烃相似。
如:
叫作:2,3—二甲基—2—丁醇 叫作:2,3—二甲基—2—乙基丁醛
四、有机物的物理性质
1、状态:
固态:饱和高级脂肪酸、脂肪、葡萄糖、果糖、蔗糖、麦芽糖、淀粉、维生素、
醋酸(16.6℃以下);
气态:C4以下的烷、烯、炔烃、甲醛、一氯甲烷、新戊烷;
液态: 油状:乙酸乙酯、油酸;
粘稠状:石油、乙二醇、丙三醇。
2、气味:
无味:甲烷、乙炔(常因混有PH3、H2S和AsH3而带有臭味);
稍有气味:乙烯;特殊气味:甲醛、乙醛、甲酸和乙酸;香味:乙醇、低级酯;
3、颜色:白色:葡萄糖、多糖 黑色或深棕色:石油
4、密度:
比水轻:苯、液态烃、一氯代烃、乙醇、乙醛、低级酯、汽油;
比水重:溴苯、CCl4,氯仿(CHCl3)。
5、挥发性:乙醇、乙醛、乙酸。
6、水溶性:
不溶:高级脂肪酸、酯、溴苯、甲烷、乙烯、苯及同系物、石油、CCl4;
易溶:甲醛、乙酸、乙二醇;与水混溶:乙醇、乙醛、甲酸、丙三醇(甘油)。
五、最简式相同的有机物
1、CH:C2H2、C6H6(苯、棱晶烷、盆烯)、C8H8(立方烷、苯乙烯);
2、CH2:烯烃和环烷烃;3、CH2O:甲醛、乙酸、甲酸甲酯、葡萄糖;
4、CnH2nO:饱和一元醛(或饱和一元酮)与二倍于其碳原子数的饱和一元羧酸或酯;
如乙醛(C2H4O)与丁酸及异构体(C4H8O2)5、炔烃(或二烯烃)与三倍于其碳
原子数的苯及苯的同系物。如:丙炔(C3H4)与丙苯(C9H12)
六、能与溴水发生化学反应而使溴水褪色或变色的物质
有机物:
⑴ 不饱和烃(烯烃、炔烃、二烯烃等)
⑵ 不饱和烃的衍生物(烯醇、烯醛、烯酸、烯酯、油酸、油酸酯等)
⑶ 石油产品(裂化气、裂解气、裂化汽油等)
⑷ 含醛基的化合物(醛、甲酸、甲酸盐、甲酸酯、葡萄糖、麦芽糖等)、酚类。
⑸ 天然橡胶(聚异戊二烯)
七、能萃取溴而使溴水褪色的物质
上层变无色的(ρ>1):卤代烃(CCl4、氯仿、溴苯等);
下层变无色的(ρ<1):直馏汽油、煤焦油、苯及苯的同系物、低级酯、液态环烷烃、
液态饱和烃(如己烷
八、能使酸性高锰酸钾溶液褪色的物质
1、有机物:
⑴ 不饱和烃(烯烃、炔烃、二烯烃等)⑵ 不饱和烃的衍生物(烯醇、烯醛、
烯酸、烯酯、油酸、油酸酯等)⑶ 石油产品(裂化气、裂解气、裂化汽油等)
⑷ 醇类物质(乙醇等)、酚类物质。
⑸ 含醛基的化合物(醛、甲酸、甲酸盐、甲酸酯、葡萄糖、麦芽糖等)
⑹ 天然橡胶(聚异戊二烯)⑺ 苯的同系物
2、无机物:
⑴ 氢卤酸及卤化物(氢碘酸HI、溴化物、碘化物)
⑵ + 2价的Fe(亚铁盐及氢氧化亚铁)⑶ -2价的S(硫化氢及硫化物)
⑷ + 4价的S(二氧化硫、亚硫酸及亚硫酸盐)⑸ 双氧水(H2O2)
有机化学知识点归纳(二)
一、有机物的结构与性质
1、官能团的定义:决定有机化合物主要化学性质的原子、原子团或化学键。
2、常见的各类有机物的官能团,结构特点及主要化学性质
(1)烷烃A) 官能团:无 ;通式:CnH2n+2;代表物:CH4
B) 结构特点:键角为109°28′,空间正四面体分子。烷烃分子中的每个C原子的
四个价键也都如此。
C) 化学性质:①取代反应(与卤素单质、在光照条件下)
, ,……。
②燃烧
③热裂解
(2)烯烃:
A) 官能团: ;通式:CnH2n(n≥2);代表物:H2C=CH2
B) 结构特点:键角为120°。双键碳原子与其所连接的四个原子共平面。
C) 化学性质:
①加成反应(与X2、H2、HX、H2O等)
②加聚反应(与自身、其他烯烃)③燃烧
(3)炔烃:
A) 官能团:—C≡C— ;通式:CnH2n—2(n≥2);代表物:HC≡CH
B) 结构特点:碳碳叁键与单键间的键角为180°。两个叁键碳原子与其所连接的
两个原子在同一条直线上。
C) 化学性质:(略)
(4)苯及苯的同系物:
A) 通式:CnH2n—6(n≥6);代表物:
B)结构特点:苯分子中键角为120°,平面正六边形结构,6个C原子和6个
H原子共平面。
C)化学性质:
①取代反应(与液溴、HNO3、H2SO4等)
②加成反应(与H2、Cl2等)
(5)醇类:
A) 官能团:—OH(醇羟基); 代表物: CH3CH2OH、HOCH2CH2OH
B) 结构特点:羟基取代链烃分子(或脂环烃分子、苯环侧链上)的氢原子而得到
的产物。结构与相应的烃类似。
C) 化学性质:
①羟基氢原子被活泼金属置换的反应
②跟氢卤酸的反应
③催化氧化(α—H)
(与官能团直接相连的碳原子称为α碳原子,与α碳原子相邻的碳原子称
为β碳原子,依次类推。与α碳原子、β碳原子、……相连的氢原子分别称为
α氢原子、β氢原子、……)
④酯化反应(跟羧酸或含氧无机酸)
(6)醛酮
A) 官能团: (或—CHO)、 (或—CO—) ;
代表物:CH3CHO、HCHO 、
B) 结构特点:醛基或羰基碳原子伸出的各键所成键角为120°,该碳原子跟其相
连接的各原子在同一平面上。
C) 化学性质:①加成反应(加氢、氢化或还原反应)
②氧化反应(醛的还原性)
(7)羧酸
A) 官能团: (或—COOH);代表物:CH3COOH
B) 结构特点:羧基上碳原子伸出的三个键所成键角为120°,该碳原子跟其相连接
的各原子在同一平面上。
C) 化学性质:
①具有无机酸的通性
②酯化反应
(8)酯类
A) 官能团: (或—COOR)(R为烃基); 代表物: CH3COOCH2CH3
B) 结构特点:成键情况与羧基碳原子类似
C) 化学性质:
水解反应(酸性或碱性条件下)
(9)氨基酸
A) 官能团:—NH2、—COOH ; 代表物:
B) 化学性质: 因为同时具有碱性基团—NH2和酸性基团—COOH,所以氨基酸具有
酸性和碱性。
3、常见糖类、蛋白质和油脂的结构和性质
(1)单糖A) 代表物:葡萄糖、果糖(C6H12O6)
B) 结构特点:葡萄糖为多羟基醛、果糖为多羟基酮
C) 化学性质:①葡萄糖类似醛类,能发生银镜反应、费林反应等;②具有多元醇
的化学性质。
(2)二糖A) 代表物:蔗糖、麦芽糖(C12H22O11)
B) 结构特点:蔗糖含有一个葡萄糖单元和一个果糖单元,没有醛基;麦芽糖含有
两个葡萄糖单元,有醛基。
C) 化学性质:①蔗糖没有还原性;麦芽糖有还原性。②水解反应
(3)多糖
A) 代表物:淀粉、纤维素 [ (C6H10O5)n ]
B) 结构特点:由多个葡萄糖单元构成的天然高分子化合物。淀粉所含的葡萄糖单元
比纤维素的少。
C) 化学性质:
①淀粉遇碘变蓝。
②水解反应(最终产物均为葡萄糖)
(4)蛋白质
A) 结构特点:由多种不同的氨基酸缩聚而成的高分子化合物。结构中含有羧基和氨基。
B) 化学性质:
①两性:分子中存在氨基和羧基,所以具有两性。
②盐析:蛋白质溶液具有胶体的性质,加入铵盐或轻金属盐浓溶液能发生盐析。
盐析是可逆的,采用多次盐析可分离和提纯蛋白质(胶体的性质)
③变性:蛋白质在热、酸、碱、重金属盐、酒精、甲醛、紫外线等作用下会发生
性质改变而凝结,称为变性。变性是不可逆的,高温消毒、灭菌、重金属盐中毒
都属变性。
④颜色反应:含苯环的蛋白质遇到浓硝酸时呈**。
⑤灼烧产生烧焦羽毛气味。
⑥在酸、碱或酶的作用下水解最终生成多种α—氨基酸。
(5)油脂
A)组成:油脂是高级脂肪酸和甘油生成的酯。常温下呈液态的称为油,呈固态的
称为脂,统称油脂。天然油脂属于混合物,不属于高分子化合物。
B) 代表物:
油酸甘油酯: 硬脂酸甘油酯:
C) 结构特点:油脂属于酯类。天然油脂多为混甘油酯。分子结构为:
R表示饱和或不饱和链烃基。R1、R2、R3可相同也可不同,相同时为单甘油酯,
不同时为混甘油酯。
D) 化学性质:
①氢化:油脂分子中不饱和烃基上加氢。如油酸甘油酯氢化可得到硬脂酸甘油酯。
②水解:类似酯类水解。酸性水解可用于制取高级脂肪酸和甘油。碱性水解又叫作
皂化反应(生成高级脂肪酸钠),皂化后通过盐析(加入食盐)使肥皂析出(上层)。
5、重要有机化学反应的反应机理
(1)醇的催化氧化反应
说明:若醇没有α—H,则不能进行催化氧化反应。
(2)酯化反应
说明:酸脱羟基而醇脱羟基上的氢,生成水,同时剩余部分结合生成酯。
二、有机化学反应类型
1、取代反应
指有机物分子中的某些原子或原子团被其他原子或原子团取代的反应。
常见的取代反应:
⑴烃(主要是烷烃和芳香烃)的卤代反应;⑵芳香烃的硝化反应;⑶醇与氢卤酸的反应、
醇的羟
基氢原子被置换的反应;⑷酯类(包括油脂)的水解反应;⑸酸酐、糖类、蛋白质的水解
反应。
2、加成反应
指试剂与不饱和化合物分子结合使不饱和化合物的不饱和程度降低或生成饱和化合物
的反应。
常见的加成反应:⑴烯烃、炔烃、芳香族化合物、醛、酮等物质都能与氢气发生加成
反应(也叫加氢反应、氢化或还原反应);⑵烯烃、炔烃、芳香族化合物与卤素的加成
反应;⑶烯烃、炔烃与水、卤化氢等的加成反应。
3、聚合反应
指由相对分子质量小的小分子互相结合成相对分子质量大的高分子的反应。参加聚合
反应的小分子叫作单体,聚合后生成的大分子叫作聚合物。
常见的聚合反应:
加聚反应:指由不饱和的相对分子质量小的小分子结合成相对分子质量大的高分子
的反应。
较常见的加聚反应:
①单烯烃的加聚反应
在方程式中,—CH2—CH2—叫作链节, 中n叫作聚合度,CH2=CH2叫作单体, 叫作加聚物(或高聚物)
②二烯烃的加聚反应
4、氧化和还原反应
(1)氧化反应:有机物分子中加氧或去氢的反应均为氧化反应。
常见的氧化反应:
①有机物使酸性高锰酸钾溶液褪色的反应。如:R—CH=CH—R′、R—C≡C—R′、 (具有α—
H)、—OH、R—CHO能使酸性高锰酸钾溶液褪色。
②醇的催化氧化(脱氢)反应
醛的氧化反应
③醛的银镜反应、费林反应(凡是分子中含有醛基或相当于醛基的结构,都可以发生
此类反应)
(2)还原反应:有机物分子中去氧或加氢的反应均为还原反应。
三、有机化学计算
1、有机物化学式的确定
(1)确定有机物的式量的方法
①根据标准状况下气体的密度ρ,求算该气体的式量:M = 22.4ρ(标准状况)
②根据气体A对气体B的相对密度D,求算气体A的式量:MA = DMB
③求混合物的平均式量:M = m(混总)/n(混总)
④根据化学反应方程式计算烃的式量。
⑤应用原子个数较少的元素的质量分数,在假设它们的个数为1、2、3时,求出式量。
(2)确定化学式的方法
①根据式量和最简式确定有机物的分子式。
②根据式量,计算一个分子中各元素的原子个数,确定有机物的分子式。
③当能够确定有机物的类别时。可以根据有机物的通式,求算n值,确定分子式。
④根据混合物的平均式量,推算混合物中有机物的分子式。
(3)确定有机物化学式的一般途径
(4)有关烃的混合物计算的几条规律
①若平均式量小于26,则一定有CH4
②平均分子组成中,l < n(C) < 2,则一定有CH4。
③平均分子组成中,2 < n(H) < 4,则一定有C2H2。
2、有机物燃烧规律及其运用
(1)物质的量一定的有机物燃烧
规律一:等物质的量的烃和,完全燃烧耗氧量相同。
[]
规律二:等物质的量的不同有机物、、、
(其中变量x、y为正整数),完全燃烧耗氧量相同。或者说,
一定物质的量的由不同有机物、、、
(其中变量x、y为正整数)组成的混合物,无论以何种比例混合,完全燃烧耗氧量相同,
且等于同物质的量的任一组分的耗氧量。
符合上述组成的物质常见的有:
①相同碳原子数的单烯烃与饱和一元醇、炔烃与饱和一元醛。其组成分别为
与即;与即。
②相同碳原子数的饱和一元羧酸或酯与饱和三元醇。
即、即。
③相同氢原子数的烷烃与饱和一元羧酸或酯
与即
规律三:若等物质的量的不同有机物完全燃烧时生成的H2O的量相同,则氢原子数
相同,符合通式(其中变量x为正整数);若等物质的量的不同有机物完
全燃烧时生成的CO2的量相同,则碳原子数相同,符合通式(其中变量x为正整数)。
(2)质量一定的有机物燃烧
规律一:从C+O2=CO2、6H2+3O2=6H2O可知等质量的碳、氢燃烧,氢耗氧量是碳的3倍。可将→,从而判断%m(H)或%m(C)。推知:质量相同的烃(),m/n越大,则生成的
CO2越少,生成的H2O越多,耗氧量越多。
规律二:质量相同的下列两种有机物与完全燃烧生成CO2
物质的量相同;质量相同的下列两种有机物与,燃烧生成H2O物质的量相同。
规律三:等质量的具有相同最简式的有机物完全燃烧时,耗氧量相同,生成的CO2和H2O的量也相同。或者说,最简式相同的有机物无论以何种比例混合,只要总质量相同,耗氧量及生成的
CO2和H2O的量均相同。
(3)由烃燃烧前后气体的体积差推断烃的组成
当温度在100℃以上时,气态烃完全燃烧的化学方程式为:
①△V > 0,m/4 > 1,m > 4。分子式中H原子数大于4的气态烃都符合。
②△V = 0,m/4 = 1,m = 4。、CH4,C2H4,C3H4,C4H4。
③△V < 0,m/4 < 1,m < 4。只有C2H2符合。
(4)根据含氧烃的衍生物完全燃烧消耗O2的物质的量与生成CO2的物质的量之比,可推导
有机物的可能结构
①若耗氧量与生成的CO2的物质的量相等时,有机物可表示为
②若耗氧量大于生成的CO2的物质的量时,有机物可表示为
③若耗氧量小于生成的CO2的物质的量时,有机物可表示为
(以上x、y、m、n均为正整数)
五、其他
最简式相同的有机物
(1)CH:C2H2、C4H4(乙烯基乙炔)、C6H6(苯、棱晶烷、盆烯)、C8H8(立方烷、
苯乙烯)
(2)CH2:烯烃和环烯烃
(3)CH2O:甲醛、乙酸、甲酸甲酯、葡萄糖
(4)CnH2nO:饱和一元醛(或饱和一元酮)与二倍于其碳原子数的饱和一元羧酸
或酯。如:乙醛(C2H4O)与丁酸及异构体(C4H8O2)
(5)炔烃(或二烯烃)与三倍于其碳原子数的苯及苯的同系物。如丙炔(C3H4)与丙苯(C9H12)
BrCH2COCH3
某位大人总结滴:在5L瓶中加2L水、700毫升丙酮、500毫升冰醋酸搅拌加热至60-65度,于2小时左右慢慢滴加500毫升溴素,加完搅拌半小时,放置过夜。次日,将反应液放入于搪瓷桶中,加入1.2Kg冰块控温10度以下用纯碱调至中性,分取油层约1.1Kg(比重1.64)用氯化钙干燥后减压分馏,收集38-42度(1.7MPa)馏分,得600-700g(收率46%-50%)
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。