吖啶类化合物引起移码突变-吖啶结构

自然情况下 细胞质基因可能发生基因重组

自然情况下 细胞质内不能发生染色体变异

从广义上讲,任何造成基因型变化的基因交流过程,都叫做基因重组,而狭义的基因重组仅指涉及DNA分子内断裂—复合的基因交流。真核生物在减数分裂时,通过非同源染色体的自由组合形成各种不同的配子,雌雄配子结合产生基因型各不相同的后代,这种重组过程虽然也导致基因型的变化,但是由于它不涉及DNA分子内的断裂c复合,因此,不包括在狭义的基因重组的范围之内。

真核细胞的细胞质基因的载体是叶绿体、线粒体,无染色体,当然不可能发生染色体变异了,而细胞核基因的载体是染色体,才可能发生染色体变异来。

基因对人体作用

三、RNA引物

目前所发现的DNA聚合酶都需要一个具3′-OH的引物,才能将合成原料dNTP一个一个接上去。因为DNA聚合酶不能催化两个游离的dNTP在DNA模板上进行聚合,如图12-3所示。实验又发现抑制RNA聚合酶的药物如利福霉素(rifampicin)能抑制DNA的复制。再者在体外DNA复制实验中发现冈崎片段的5′端都有一小段4~12个核苷酸的RNA引物(RNA primer)。现知RNA聚合酶合成新链时不需要引物,能直接催化游离NTP聚合。可见RNA引物为DNA聚合酶提供聚合新核苷酸所需的3′-OH。RNA引物最后被DNA聚合酶Ⅰ除去,留下的空隙也由该酶补满,缺口再由DNA连接酶封口。

在DNA的复制需要RNA引物呢,除了DNA聚合酶不能催化两个游离dNTP的聚合,而RNA引物酶却具有此能力外,这种作用尚可尽量减少DNA复制起始处的突变。因为游离核苷酸起始处的聚合最容易出现差错,若用RNA引物,即使出现差错,由于最后将被DNA聚合酶Ⅰ切除,便可提高DNA复制的真实性。

四、引发体

引发体(primosome)是由多种蛋白质及酶组成,是DNA复制开始所必需的。引发体中的某些蛋白质如DnaA能结合至DNA复制起始部位,DnaB具有解链酶的作用,DnaC辅助DnaB结合到复制起始点,使起始部位的双链解开。而引发体中的引物酶(primase)在已解开起始部位的DNA单链按碱基互补配对催化NTP聚合,合成一小片段的RNA,作为DNA合成的引物,即沿此引物RNA的3′-OH进行延伸。

四、真核生物端粒DNA的复制

真核生物线性染色体的两个末端称为端粒(telomere)。按上述DNA复制机制新合成子链5′端的那段RNA引物被切除后,必留下一个空缺,假如每次细胞分裂或DNA复制都是如此,端粒将会不断缩短,最终导致关键基因的丧失及种系灭绝的危险,但事实并非如此。那么真核生物一定存在着某种阻止端粒缩短的机制。

(一) 端粒DNA的结构和端粒酶

对端粒DNA序列的分析,发现端粒DNA的3′端是由数百个串联重复GT丰富的短的寡核苷酸序列,如四膜虫的重复序列为-GGGGTT-,人为-AGGGTT-。端粒DNA序列虽不含功能基因,但对维持染色体的稳定性起着重要作用。如果端粒丧失,染色体之间可能出现端-端融合、降解、重排乃至染色体丢失等变化,最后细胞衰亡。

近年来,发现了一种能防止端粒缩短的酶,称为端粒酶(telomerase),该酶由蛋白质和RNA两部分组成,其中RNA作为合成端粒DNA的模板,端粒酶是目前所知唯一携带RNA模板的逆转录酶,具有种属特异性,例如四膜虫的端粒酶,其RNA部分含159个核苷酸,其中有一段序列为5′-CAACCCCAA-3′可作为合成端粒DNA3′端GT 丰富序列-GGGGTT-模板。人端粒酶的RNA含450个碱基,其中-CUAACCCUAAC-为合成-AGGGTT-的模板。这样可防止细胞分裂时DNA复制端粒的缩短。

端粒、端粒酶和细胞的衰老有密切关系。有人将端粒称为分子钟或有丝分裂钟。但是恶性肿瘤细胞当端粒缩短到某种程度,端粒酶活性又重新出现,对端粒进行补偿,使之永不衰亡,形成恶性增殖。

(二) 端粒酶的作用机制

第四节DNA的损伤与修复

DNA是储存遗传信息的物质。从生物遗传角度来讲,要求在复制过程中保持遗传密码的稳定性,物种才能得以延续。哺乳动物单倍体细胞的基因组由2.9X109 bp DNA组成。动物一生中,从受精卵细胞到个体亡,这些遗传密码要经过千万次的复制。在物种进化的长河中,DNA复制的次数更是难以计数,而且生物体内外环境都存在着使DNA损伤(DNA damage)的因素。可见,除DNA复制的高度真实性外,还要求某种修复DNA损伤的机制。每一遗传信息都以不同拷贝储存在DNA两条互补链上。因此,若一条链有损伤,可被修复酶切除,并以未损伤的信息重新合成与原来相同的序列,这就是DNA修复(DNA repair)的基础。

但是在漫长的进化过程中,DNA的序列还是会发生改变, 通过复制传递给子代成为永久的,这种DNA的核苷酸序列永久的改变称为突变(mutation)。若发生的突变有利于生物的生存则保留下来,这就是进化;若不适应于自然选择(nature selection)则被淘汰,因此生物的进化可以看成是一种主动的基因改变过程,这是物种多样性的原动力。所以,生物的变异是绝对的,修复是相对的。

一、造成DNA损伤的因素

造成DNA损伤的因素有生物体内自发的、亦有外界物理和化学等因素。

(一) 自发的因素

由于DNA分子受到周围环境溶剂分子的随机热碰撞(thermal collision),腺嘌呤或鸟嘌呤与脱氧核糖间的N-糖苷键可以断裂,使A或G脱落。人体细胞中DNA每天每个细胞要脱落5 000个嘌呤碱,每天每个细胞也有100个胞嘧

啶自发脱氨而成尿嘧啶。

(二) 物理因素

1.紫外线损伤由于嘌呤环与嘧啶环都含有共轭双键,能吸收紫外线而引起损伤。嘧啶碱引起的损伤比嘌呤碱大10倍。损伤是由于嘧啶二聚体的产生,即2个相邻嘧啶碱的C5和C6共价交联,如图12-18所示。

2.电离辐射损伤如X射线和γ射线,可以是辐射能量直接对DNA的影响,或DNA周围的溶剂分子吸收了辐射能,再对DNA产生损伤作用。如碱基的破坏、单链的断裂、双链的断裂、分子间的交联、碱基脱落或核糖的破坏等。

(三) 化学因素

二、DNA损伤的类型

根据DNA分子的改变,可把突变分为下面几种主要类型。

点突变

点突变(point mutation)是DNA分子上一个碱基的变异,可分为:①转换(transition)同型碱基,如一种嘌呤代替另一种嘌呤或一种嘧啶代替另一嘧啶。②颠换(transversation)异型碱基,即嘌呤变嘧啶,或嘧啶变嘌呤。点突变可根据发生在DNA分子的部位,如发生在启动子或剪接信号部位可以影响整个基因的功能;若发生在编码序列,有的可以改变蛋白质的功能如引起镰状红细胞贫血;有的则为中性变化,即编码氨基酸虽变化,但功能不受影响;有的甚至是静止突变,碱基虽变但编码氨基酸种类不变。

缺失

缺失(deletion)是一个碱基或一段核苷酸链乃至整个基因,从DNA大分子上丢失。如有些地中海贫血、生长激素基因缺失,再如上述Lesch- Nyhan综合征是HGPRT基因缺失。

(三)插入

插入(insertion)是一个原来没有的碱基或一段原来没有的核苷酸序列插入到DNA大分子中去,或有些芳香族分子如吖啶(acridine)嵌入DNA双螺旋碱基对中,可以引起移码突变(frame-shift-mutation),影响三联体密码的阅读方式。

(四)倒位

DNA链内部重组,使其一段方向颠倒。

三、修复机制

光修复机制

这种机制主要存在于低等生物。

1. 不需要光复活酶

光复活酶(photoreactivating enzyme)也称为DNA光修复酶(photolyase)。当280nm紫外线照射DNA产生的嘧啶二聚体,在短波239nm照射下,二聚体即分解成单体。

2. 需要光复活酶紫外线照射使光复活酶激活,能解聚嘧啶二聚体。

切除修复

因不需要光照射,故也称暗修复。DNA引起大的损伤, 包括UV引起的嘧啶二聚体、嘧啶/ 环丁烷二聚体、几个其它类型的碱基加合物、通过曝露于香烟的烟尘在DNA中形成的苯并芘尿嘧啶。一般由切除修复(excision repair)系统修复。该修复途径对所有生物的生存是关键的。在大肠杆菌E.coli中,有一种UV特异的切割酶(excinuclease或UVrABC enzyme),能识别UV照过产生的二聚体部位。并在远离损伤部位5′端8个核苷酸处及3′端4个核苷酸处各作一切口。像外科手术“扩创”一样,将含损伤的一段DNA切掉。DNA聚合酶Ⅰ进入此缝隙,从3′-OH开始,按碱基配对原则以另一条完好链为模板进行修复。最后由DNA连接酶将新合成的DNA片段与原来DNA链连接而封口 (图12-19) 。真核细胞的切割核酸酶的作用和机制,是与细菌的酶完全类似的方式对嘧啶二聚体切割。切除修复是人体细胞的重要修复形式,有些遗传性疾病如着色性干皮病(xeroderma pigmentosum),是常染色体隐性遗传性疾病。纯合子患者的皮肤对阳光或紫外线极度敏感,皮肤变干、真皮萎缩、角化、眼睑结疤、角膜溃疡,易患皮肤癌。此病是由于缺乏UV特异内切核酸酶造成的。

(三) 碱基切除修复

每个细胞都有一类DNA糖苷酶(DNA glycosylase),每一种酶能识别一种DNA分子中改变的碱基,能水解该改变的碱基与脱氧核糖间的糖苷键,使改变的碱基脱落,在DNA上产生一个缺嘌呤或缺嘧啶的位(apurinic-or apyrimidinic-site,AP site),再藉切除修复机制进行修复。现知至少有20种不同的DNA糖苷酶,各具特异性。如识别胞嘧啶脱氨生成的尿嘧啶,腺嘌呤脱氨基产物,开环的碱基,不同烷基化类型的碱基等。如胞嘧啶脱氨后即成尿嘧啶,若不纠正,可引起类型转换,即G-C→A-T。

碱基切除修复(base-excision repair)步骤如下:

1)DNA糖苷酶识别损伤的碱基,在碱基和脱氧核糖之间切割。

2)AP核酸内切酶切AP位置附近的磷酸二酯键。

3)DNA聚合酶Ⅰ用它的5′→3′外切酶活性除去损伤链,从缺口的3′-OH起始

修复合成,用新合成的DNA替代。

4)最后缺口由DNA连接酶封口(图12-20)。

尿嘧啶DNA糖苷酶修复的发现,解答了一个长年以来的疑题,即组成RNA是U,而组成DNA却是甲基化为T,即从UMP→dTMP,要消耗能量。但U和T都与A互补配对,所编的密码是相同的。生物体为什么花如此代价? 现在问题清楚了,尿嘧啶-DNA糖苷酶只能切除DNA链上的尿嘧啶,而不能切除DNA链上的胸腺嘧啶,因为后者C5有一甲基,好像是给尿嘧啶加上一个标签。胞嘧啶脱氨基后形成的尿嘧啶即无此标签,即被该糖苷酶识别为改变了的碱基。若DNA与RNA一样也用尿嘧啶,那么胞嘧啶脱氨形成尿嘧啶,与正常部位的尿嘧啶便无法区别,不能纠正,造成子代DNA的突变即GC→AT。可见DNA由T代替U,能增加遗传信息的稳定性。相反,RNA不需修复,拷贝数很多,半衰期短,即使有个拷贝的胞嘧啶脱氨基转变为U,影响也不大,合成出来的绝大多数蛋白质还是具有正常生理功能,而且U作为合成原料经济得多。

第五节重组DNA技术

DNA重组(recombination of DNA)是自然界常见现象,指的是在两个DNA分子之间,或一个DNA分子的两个不同部位之间通过链断裂和片段的交换重接,改变了基因的组合序列。这种交换可发生于同一细胞内或细胞间,甚至不同物种的DNA。DNA重组现象广泛存在于真核细胞、原核细胞乃至病毒和质粒。

本节所要介绍的重组DNA技术或基因工程(genetic engineering),是70年代由Stanford大学Boyer、Cohen和Berg等科学家建立的一种革命性的技术方法,它是在实验室内用人工方法将不同来源,包括不同种属生物的DNA片段,拼接成一个重组DNA(recombinant DNA)分子,将其引入活细胞内,使其大量复制或表达。这种技术方法称为重组DNA技术。由于它可以把一个生物体中携带的某一特定的遗传信息(基因),通过一定的方法转移到另一生物体中,使之获得前者的遗传特征,创造新的遗传组合,所以又称为基因工程,若从遗传角度来考虑也可称为遗传工程。重组DNA技术中所含有的目的DNA分子或基因需进行无性繁殖、扩增成为一个克隆(clone),因此基因工程在不同的场合又可有不同的名称,如分子克隆(molecular cloning)、DNA克隆、基因克隆等。

4.聚合酶链反应(PCR)扩增DNA片段或cDNA

以已有DNA为模板,通过PCR扩增出所需片段。另可以mRNA为模板,采用逆转录酶PCR进行扩增,得到所需要的cDNA。(详见下节)。

(二) 载体

欲将外源基因或DNA片段导入宿主细胞进行扩增或表达,需要通过一个能在宿主细胞中进行自我复制并表达目的基因的载体(vector)的介导,目的DNA与载体在体外构成重组DNA分子,然后导入宿主细胞,进行扩增及表达。以大肠杆菌作为宿主细胞的载体有:质粒、λ噬菌体、粘粒和M13噬菌体等。这些载体分为克隆用和表达用不同种类,有些还含有在真核细胞中生活及基因表达必须的成分,供不同实验目的选用,多数已作为商品供应。

1. 克隆载体(vector of clone)

(1)质粒质粒(plasmid)是细菌染色体外小的双链闭环的DNA分子,能自主复制,并含有抗药性基因。

较理想的质粒应符合下列条件:

1) 要有多个单切口的限制性内切酶的位点,而且外源DNA片段插入后,不影响质粒的复制。

2) 含有抗药性或其他可供筛选的标志,外源DNA插入后,抗药性消失,或其他酶活性丧失。

3) 含有高效的自主复制序列,这样在宿主细胞中质粒复制的拷贝数多。若含有能在真核细胞生活的序列,这种载体则能在真核细胞中生活及表达。pBR322是一种最常用、最基础的质粒。通过人工构建而成,其结构如图12-22所示。大小:4363bp抗药性基因:有两个。氨苄青霉素抗性 (ampicillin resistance,ampR)基因编码β-内酰胺酶(β-1actamase),能切开氨苄青霉素的内酰胺环,从而使之失效。若在此基因中插入外源DNA片段,即破坏该酶的结构。另一四环素抗性(tetracycline resistance,ampR)基因,编码一种蛋白质,能改变细菌膜的状态,阻止四环素进入细胞而赋予宿主抗四环素的能力。若

该基因被外源DNA插入即失活。自主复制(ori)成分(序列),使pBR322在大肠杆菌内能高效进行复制,产生多拷贝。

另一些质粒如pUC系统,除含ampr基因外,还含大肠杆菌的lacZ基因也常被用作为选择的标记。此基因编码β半乳糖苷酶。LacZ位于多位点接头(polylinker)上。有的还含有高效的启动子。

(2) λ噬菌体λ噬菌体(bacteriophage λ)为线状双链DNA病毒(约50kb),感染大

肠杆菌。经改造的噬菌体有一、二个EcoRⅠ切点,并含有LacZ基因作为筛选的标志。当中的1/3序列不是病毒生活所必需,可以去除,而由外源DNA片段(5~25kb)替代。如图12-23所示。

β-半乳糖苷酶能分解一种化学品称为5-溴-4-氯-3吲哚-半乳糖苷(5-bromo-4-chloro

-3-indolyl-galactoside,X-gal),X即为5-bromo-4-chloro-3-indolyl,是一发色(蓝色)基团,当它与半乳糖以糖苷键结合时即为无色。但是X-gal经β-半乳糖苷酶作用后即将X基团释放出来而成蓝色。若LacZ被插入的DNA片段破坏,则不能产生β-半乳糖苷酶,因此在含有X-gal的培养基中成为无色的斑点。若LacZ完整,X-gal被β-半乳糖苷酶分解而成为蓝色的斑点,故可作为筛选的标志。

(3) 其他

2. 表达载体(expression vector)

表达载体是带有调控克隆基因表达必需的转录和翻译信号的克隆载体。克隆基因在细菌和其它细胞中的过量表达,能够产生大量的特异蛋白质。

(1)大肠杆菌表达载体大肠杆菌表达载体(E.coli expression vector)除具有克隆载体所具备的性质以外,还带有控制在大肠杆菌中表达元件即转录和翻译所必需的DNA序列 : 启动子、操纵基因、编码阻遏物的基因、核糖体结合位点、转录终止信号。

(2)真核表达载体真核表达载体(eukaryotic expression vector)含有必不可少的原核序列,如在大肠杆菌中能够作用的复制子,便于挑选带重组质粒细菌的抗生素抗性基因。但在质粒中还包括在真核细胞中生活和表达元件:启动子/ 增强子、克隆位点、终止信号和加poly(A) 信号、剪接供体和受体、复制起始点和选择标记基因。

(三) 工具酶

限制性内切酶(restriction enzyme或restriction endonuclease),DNA连接酶、末端脱氧核苷酸转移酶(terminal deoxynucleotidyl transferase,TdT)、逆转录酶、S1核酸酶(切单链DNA或RNA)、碱性磷酸酶等均属工具酶。限制性内切酶是重组DNA技术中最关键的工具酶,现着重加以介绍。

限制性内切酶是微生物的一种自我保护的酶,它能识别双链DNA分子中特异碱基序列并切开。所以当外源DNA侵入细菌体时,细菌体为保护自身DNA的完整性,通过其所含的特有的限制性内切酶对外源DNA进行酶解,而自身的DNA分子中所含该限制性内切酶的识别碱基序列则被另一种酶进行甲基化而保护起来,故不被自己的限制性内切酶所切断。

限制性内切酶识别的DNA序列多数为4~6个碱基,新近发现一些能识别8个碱基的。识别碱基数少的酶对DNA切的机率多,碱基数大则少。所以识别8个碱基序列的酶,可用于分析大片段DNA,可切成上百乃至上千kb的片段。限制性内切酶的识别序列都具有回文或双重对称结构的特点。

切口:有两种切口。一种切开后,即成黏性末端(cohesive ends或sticky ends),因为两个末端的碱基互补配对,易通过氢键相连。

有些限制性内切酶的切口,成为平头末端(blunt ends)

不同的DNA分子上若有某一种限制性内切酶的位点,均能被该酶切断,并产生相同的切口,这对重组DNA分子很有利。

拼接方法:

1. 黏性末端

2.均聚体尾部 (homopolymeric tailing)

3.化学合成的接头 (chemical synthetic linker)

三、重组DNA分子引入宿主细胞

(一) 原核细胞

最常用的是大肠杆菌,要选择合适的菌株(strain)。宿主细胞先经氯化钙处理,以改变细胞膜的通透性,使重组DNA分子容易进入。这种将重组质粒DNA分子引入细菌,使其在细菌体内扩增及表达的过程称为转化 (transformation)。

(二) 动物细胞

宿主细胞主动摄取或被动引入外源DNA片段或重组DNA分子的过程称为转染(transfection)。进入细胞内的DNA可以被整合至宿主的基因组中,也可以在染色体外生活表达,这就需要采用含有能在真核细胞生活的结构成分的载体。可用磷酸钙介导(calcium-phosphate mediated)使外源DNA形成沉淀颗粒,颗粒若沉着在动物细胞的表面,以利细胞将这些颗粒摄入。近年用脂质体(1iposome)介导外源DNA的转移,可提高转染效率。用电穿孔(electroporation)方法,将外源DNA与宿主细胞放入特别的装置内,在高压电脉冲作用下,细胞外的DNA分子会在细胞膜上穿孔而入,并最终进入细胞核内,整合至宿主基因组中。用基因枪(颗粒轰击particle bombardment)方法是将外源DNA包裹了化学性质稳定的金或钨微粒以后,在电子发射装置或高压气流的驱动下,以极高速度打入受体细胞,组织和器官中,以进行基因转移技术。

用逆转录病毒(retrovirus)作为载体可以成功地感染动物细胞。另外可用微注射(microinjection)的方法,将外源DNA分子直接注射入细胞内或核内。近年发展一种转基因(transgenic)小鼠方法,即将重组DNA分子注射于单细胞受精卵的原核内,然后再将其植入一假妊娠母鼠的子宫内。生下的小鼠在全身各组织细胞的基因组DNA中都含有这种外源DNA,可以研究在整体条件下外源DNA的功能。

基因突变包括基因对的增添与缺失为什么书上说基因突

基因与健康   基因检测现代医学研究证明,除外伤外,几乎所有的疾病都和基因有关系。像血液分不同血型一样,人体中正常基因也分为不同的基因型,即基因多态型。不同的基因型对环境因素的敏感性不同,敏感基因型在环境因素的作用下可引起疾病。另外,异常基因可以直接引起疾病,这种情况下发生的疾病为遗传病。 可以说,引发疾病的根本原因有三种: (1)基因的后天突变; (2)正常基因与环境之间的相互作用; (3)遗传的基因缺陷。 绝大部分疾病,都可以在基因中发现病因。 基因通过其对蛋白质合成的指导,决定我们吸收食物,从身体中排除毒物和应对感染的效率。 第一类与遗传有关的疾病有四千多种,通过基因由父亲或母亲遗传获得。 第二类疾病是常见病,例如心脏病、糖尿病、多种癌症等,是多种基因和多种环境因素相互作用的结果。 基因是人类遗传信息的化学载体,决定我们与前辈的相似和不相似之处。在基因“工作”正常的时候,我们的身体能够发育正常,功能正常。如果一个基因不正常,甚至基因中一个非常小的片断不正常,则可以引起发育异常、疾病,甚至亡。 健康的身体依赖身体不断的更新,保证蛋白质数量和质量的正常,这些蛋白质互相配合保证身体各种功能的正常执行。每一种蛋白质都是一种相应的基因的产物。 基因可以发生变化,有些变化不引起蛋白质数量或质量的改变,有些则引起。基因的这种改变叫做基因突变。蛋白质在数量或质量上发生变化,会引起身体功能的不正常以致造成疾病。基因检测概念  基因检测是通过血液、其他体液或细胞对DNA进行检测的技术。 基因检测可以诊断疾病,也可以用于疾病风险的预测。疾病诊断是用基因检测技术检测引起遗传性疾病的突变基因。目前应用最广泛的基因检测是新生儿遗传性疾病的检测、遗传疾病的诊断和某些常见病的辅助诊断。目前有1000多种遗传性疾病可以通过基因检测技术做出诊断。 近年来令人非常兴奋的是预测性基因检测的开展。利用基因检测技术在疾病发生前就发现疾病发生的风险,提早预防或采取有效的干预措施。目前已经有20多种疾病可以用基因检测的方法进行预测。 检测的时候,先把受检者的基因从血液或其他细胞中提取出来。然后用可以识别可能存在突变的基因的引物和PCR技术将这部分基因复制很多倍,用有特殊标记物的突变基因探针方法、酶切方法、基因序列检测方法等判断这部分基因是否存在突变或存在敏感基因型。 目前基因检测的方法主要有:荧光定量PCR、基因芯片、液态生物芯片与微流控技术等。传统检测的区别  我们通常的医疗检测手段是针对疾病的具体症状或已有病变进行检测。现代科学的发展促进了医疗检验手段的不断发展,可以深入细微之处对疾病进行纵向或横向的剖析。 大家都知道,人体的基本组成部分是细胞,如果可以对细胞展开一种实质的剖析,就可以找到疾病产生的根源。如癌症是人体细胞发生突变并大量复制的结果。一般医疗检测手段是要看你身体是否已经有癌细胞存在,而对于没有产生癌变的细胞但已经具有的风险却无从得知。基因检测则不然,通过基因检测完全可以准确地告诉你,未来某个生命时段是否存在发生某种疾病的可能性或机率,给你一个预警通知,以便及早采取有效的防病措施。 基因 基因检测 基因测序 体检 gene gene-test 基因检测与常规体检的区别? 疾病易感基因检测与常规体检都能起到预防的作用,但二者反映的是不同的阶段。一种疾病从开始到发病要经历很长的时间。基因检测是人在没发病时,预防将来会发生什么疾病,属于检测的第一阶段;而常规检测是发生疾病后,疾病到达什么程度。如:早期、中期等等,这属于检测的第二个阶段,是临床医学的范畴。所以说,基因检测是主动预防疾病的发生,而传统的体检手段则无法起到这样的预防作用。 传统体检主要针对人体已经出现的临床病变进行诊断和检查,它的主要任务是配合疾病的治疗,无法在病变之前预知,下更多、更深的结论。也就是说,在疾病的预防上,传统体检十分的被动和滞后。现实中很多疾病并无明显征兆,而一旦发病,现代医学往往束手无策,患者及其家人就可能一生痛苦和麻烦。 编辑本段准确率 疾病家庭的遗传史就是疾病易感基因的遗传所造成的,所以基因检测能够检测出这些遗传的易感基因型,检测准确率达到99.9999%。检测病种类型  (1) D类34种:Graves病、桥本甲状炎、急性淋巴细胞白血病、慢性粒细胞白血病、系统性红斑狼疮、慢性乙肝、慢性重型乙肝、自身免疫性肝炎、乙肝后肝硬化、原发性胆汁性肝硬化、 I型糖尿病、 Vogt-小柳原田综合症 、类风湿性关节炎、尿毒症、 Iga系肾病、非Iga系膜增值性肾炎、抗肾小球基底膜性肾炎、激素敏感型肾病、肾癌、发作性睡病、哮喘、骨关节结核、克罗恩病、再生障碍性贫血、Hiv感染和艾滋病、过敏性鼻炎、牙周炎、膀胱癌、食管癌、结肠癌、直肠癌、白塞氏病、慢性荨麻疹、视神经炎 . (2) E类9种:心脑血管疾病易感基因检测(包括原发性高血压、高血脂、冠心病、动脉粥样硬化、出血性脑卒中、缺血性脑卒中、房颤、老年痴呆、高血压合并左室肥厚 ) (3) F类5种:糖尿病及其并发症易感性检测(包括Ⅱ型糖尿病、糖尿病并发肾病、糖尿病眼病、糖尿病心血管并发症、Ⅱ型糖尿病神经病变 ) (4) Gc类13种:男性肿瘤易感基因检测(包括肺癌、肝癌、胃癌、急性淋巴细胞白血病、慢性淋巴细胞白血病、结肠癌、直肠癌、喉癌、食管癌、胃溃疡、鼻咽癌、膀胱癌、前列腺癌等) (5) Hc类15种:女性肿瘤易感基因检测(包括乳腺癌、卵巢癌、宫颈癌、食管癌、鼻咽癌、肺癌、原发性肝癌、胃癌、胃溃疡、结肠癌、直肠癌、喉癌、膀胱癌、急性淋巴细胞白血病、慢性淋巴细胞白血病等) (6) X类5种:胰腺癌、Ⅱ型糖尿病足、过敏性紫癜性肾炎、老年性白内障、慢性支气管炎。 (7) Y类5种:内源性高甘油三酯血症、高胆固醇血症、IIb型高脂蛋白血症、高脂血症人群的膳食干预敏感性 (8) 美丽一号M1——健康美容基因检测 (9) 美丽二号M2——肥胖易感基因检测基因亲子鉴定  通过遗传标记的检验与分析来判断父母与子女是否亲生关系,称之为亲子试验或亲子鉴定。DNA是人体遗传的基本载体,人类的染色体是由DNA构成的,每个人体细胞有23对(46条)成对的染色体,其分别来自父亲和母亲。夫妻之间各自提供的23条染色体,在受精后相互配对,构成了23对(46条)孩子的染色体。如此循环往复构成生命的延续。 由于人体约有30亿个核苷酸构成整个染色体系统,而且在生殖细胞形成前的互换和组合是随机的,所以世界上没有任何两个人具有完全相同的30亿个核苷酸的组成序列,这就是人的遗传多态性。尽管遗传多态性的存在,但每一个人的染色体必然也只能来自其父母,这就是DNA亲子鉴定的理论基础。 传统的血清方法能检测红细胞血型、白细胞血型、血清型和红细胞酶型等,这些遗传学标志为蛋白质(包括糖蛋白)或多肽,容易失活而导致检材得不到理想的检验结果。此外,这些遗传标志均为基因编码的产物,多态信息含量(PIC)有限,不能反映DNA编码区的多态性,且这些遗传标志存在生理性、病理性变异(如A型、O型血的人受大肠杆菌感染后,B抗原可能呈阳性。因此,其应用价值有限。 DNA检验可弥补血清学方法的不足,故受到了法医物证学工作者的高度关注,近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、案、碎尸案、致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。 亲子鉴定的准确性 DNA亲子鉴定是目前最准确的亲权鉴定方法,如果小孩的遗传位点和被测试男子的位点(至少1个)不一致,那么该男子便100%被排除血缘关系之外,即他绝对不可能是孩子的父亲。如果孩子与其父母亲的位点都吻合,我们就能得出亲权关系大于99.99%的可能性,即证明他们之间的血缘亲子关系。了解自身是否有家族性疾病的致病基因  具有癌症或多基因遗传病(如老年痴呆、高血压等)家族史的人是最需要做基因体检的对象,通过基因体检这些高危险群可以知道自己是不是带有疾病基因,以便及早发现和及早预防,并做好饮食保健与生活习惯的调整,来避免疾病发生的可能。 正确选择药物,避免药物浪费和药物不良反应  由于个体遗传基因上的差异,不同的人对外来物质(如药物)会产生的反映也会有所不同,因此部分病人使用正常剂量的药物时,可能会出现药物过敏、红肿发疹的现象,或者是在服用相同药物时,有人觉得神效,有人却不但无效还有副作用。基因体检通过对药物反应相关基因的测定,帮助了解基因体质,协助预测可能的药物反应。 提供健康风险管理最好的依据  目前的很多不良环境因子,如空气、水质及农药的污染加上不良生活习惯像抽烟、饮酒等,都会容易使体内的基因受到破坏而产生疾病。长期暴露在这些高度污染环境或有不良生活习惯的人以及目前身体健康的民众都可以通过基因体检了解个人在不同疾病上的发生倾向,进行全面的生活调整或干预,以期降低风险延缓疾病发生,达到基康所倡导的“个性医疗,解码健康”的目的。 焦作爱得健康管理有限公司宣 基因检测预防疾病

举例说明基因突变的类型(此为学业水平测试考纲内容)求专业老师学长解答,财富悬赏不封顶。

在高中教材中,基因突变主要包括碱基对的增添、缺失和替换。

而大学教材中,基因突变的种类主要包括碱基置换突变(base substitution和移码突变(frameshift mutation)两大类,实质是一样的。

1、碱基置换突变(subsititution)指DNA分子中一个碱基对被另一个不同的碱基对取代所引起的突变,也称为点突变(point mutation)。点突变分转换和颠换两种形式。如果一种嘌呤被另一种嘌呤取代或一种嘧啶被另一种嘧啶取代则称为转换(transition)。嘌呤取代嘧啶或嘧啶取代嘌呤的突变则称为颠换(transversion)。由于DNA分子中有四种碱基,故可能出现4种转换和8种颠换(见上图)。在自然发生的突变中,转换多于颠换。

2、移码突变(translocation)指DNA片段中某一位点插入或丢失一个或几个(非3或3的倍数)碱基对时,造成插入或丢失位点以后的一系列编码顺序发生错位的一种突变。它可引起该位点以后的遗传信息都出现异常。发生了移码突变的基因在表达时可使组成多肽链的氨基酸序列发生改变,从而严重影响蛋白质或酶的结构与功能。吖啶类诱变剂如原黄素、吖黄素、吖啶橙等由于分子比较扁平,能插入到DNA分子的相邻碱基对之间。如在DNA复制前插入,会造成1个碱基对的插入;若在复制过程中插入,则会造成1个碱基对的缺失,两者的结果都引起移码突变。

什么是基因突变?突变的分子基础是什么?

1 .基因突变的类型

突变是指发生在遗传物质上的变异。广义上突变可以分为两类:染色体畸变和基因突变。狭义突变通常指基因突变,它是指DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变,包括单个碱基改变所引起的点突变,或多个碱基的缺失、重复和插入。如果按照碱基顺序改变类型区分,突变可以分为碱基置换突变、移码突变、整码突变、染色体错误配对和不等交换4种。

(1) 碱基置换突变:由一个碱基被另一个碱基取代而造成的突变叫碱基置换突变。例如在 DNA 分子中的 GC 碱基对由 CG 或 AT 或 TA 所代替, AT 碱基对由 TA 或 GC 或 CG 所代替。碱基替换过程只改变被替换碱基的那个密码子,也就是说每一次碱基替换只改变一个密码子,不会涉及到其他的密码子。根据碱基置换对多肽链中氨基酸顺序的影响,可以将突变分为同义突变、错义突变、无义突变和终止码突变4种类型。

① 同义突变:由于密码子具有简并性,因此,单个碱基置换可能只改变mRNA上的特定密码子,但不影响它所编码的氨基酸。例如,DNA分子模板链中GCG的第三位G被A取代而成GCA,则mRNA中相应的密码子CGC就被转录为CGU,由于CGC和CGU都是精氨酸的密码子,因而新形成的多肽链没有氨基酸顺序和数目的变化,这种突变称为同义突变。

② 错义突变:是指DNA分子中的碱基置换不仅改变了mRNA上特定的遗传密码,而且导致新合成的多肽链中一个氨基酸被另一氨基酸所取代这种情况称为错义突变。错义突变往往导致产生功能异常的蛋白质。

③ 无义突变:当单个碱基置换导致出现终止密码(UAG、UAA、UGA)时,多肽链将提前终止合成,所产生的蛋白质大都失去活性或丧失正常功能,此种突变称为无义突变。例如,DNA分子模板链中ATG的G被T代替时,相应的mRNA上的密码子便从UAC变成终止信号UAA,因此翻译到此为止,使肽链缩短。

④ 终止密码突变:当DNA分子中一个终止密码发生突变成为编码氨基酸的密码子时,多肽链的合成将不能正常终止,肽链将继续延长直至遇到下一个终止密码子,因而形成了延长的异常肽链,这种突变称为终止密码突变,属于一类延长突变。

此外还有抑制基因突变。如果基因内部不同位置上的不同碱基分别发生突变,使其中一次突变抑制了另一次突变的遗传效应,这种突变称为抑制基因突变。

(2)移码突变

移码突变是指DNA链上插入或缺失1个、2个甚至多个碱基(但非3个碱基可3的整数倍的碱基),导致在插入或缺失碱基部位以后的密码子顺序和组成发生相应改变。由于原来的密码子移位,终止密码子常常推后或提前出现,结果造成新合成的肽链延长或缩短。

(3)整码突变:如果在DNA链的密码子之间插入或缺失一个或几个密码子,则合成的肽链将增加或减少一个或几个氨基酸,但敫或缺失部位的前后氨基酸顺序不变。这种突变黍为整码突变,也称密码子插入或缺失。

2 .诱发基因突变的因素及其作用机理

(1)物理诱变因素:各种射线,如X射线、 γ 射线、 α 射线、 β 射线和中子等都能诱发基因突变,当这线辐射作用于生物体时,首先从细胞中各种物质的原子或分子的外层击出电子,引起这些物质的原子或分子的电离和激发。当细胞内的染色体或DNA分子在射线的作用下产生电离和激发时,它们的结构就会改变,这是电离辐射的直接作用。电离辐射有累加效应,小剂量长期照射与大剂量短期照射的诱变效果相同。

(2)化学诱变因素:一些化学物质和辐射一样能够引起生物体发生基因突变。有三种类型:一类是能够改变DNA化学结构的诱变剂,如亚硝酸和烷化剂;一类是碱基类似物,它们的分子结构与DNA分子中的碱基十分相似。在DNA分子复制时,这些碱基类似物能够以假乱真,作为DNA的组成成分加入到DNA分子中,从而引起基因突变。常见的碱基类似物有5-溴尿嘧啶、2-氨基嘌呤等;还有一类是吖啶类化合物,它们可以插入DNA分子结构中,使DNA分子在复制或转录时出现 差错而导致突变。

(3)病毒诱变因素:某些病毒进入宿主细胞后能够干扰宿主细胞正常的DNA复制也会引起基因突变。

3 .基因突变的特点和意义

(1)普遍性 即生物界中,基因突变是普遍存在的。基因的多样性导致了自然界中的生物的种类、结构、性状具有多样性,而基因在一定条件下就有可能发生突变。其中自然条件下发生的基因突变称为自然突变,人为条件下诱发产生的基因突变叫做诱发突变。

(2)随机性 因为基因突变发生在DNA复制过程中,而绝大多数生物都具有DNA,在生物个体发育过程中,随时都进行着细胞分裂,并且进行着DNA的复制,只要条件改变,就随时都有可能发生突变。基因突变如果发生在体细胞中一般不能传递给后代,如果发生在生殖细胞中,则可以通过受精作用直接传递给后代。

(3)不定向性 同一个基因可以向不同方向发生突变,产生一系列不同的等位基因,即产生复等位基因。突变时也可以再一次突变回到原来那个基因。

(4)低频性 因为生物体内的DNA分子结构具有相对的稳定性,且DNA复制时一般都会严格遵循碱基互补配对原则,因此,发生基因突变的机率是很低的。

(5)多害少利性 因为任何一种生物都是经过长期自然选择的产物,它们与环境条件已经取得了高度的协调关系;如果发生基因突变,就有可能破坏这种关系,因而对生物的生存往往是有害的。

意义:基因突变对生物进化具有重要意义,它是生物变异的根本来源,为生物进化提供了最新的原材料。因为没有基因突变,就不会产生等位基因,就不可能发生基因重组,而生物进化的内因是遗传与变异。

4.基因重组及意义

从广义上讲,任何造成基因型变化的基因交流过程,都叫做基因重组。而狭义的基因重组仅指涉及DNA分子内断裂-复合的基因交流。真核生物在减数分裂时,通过非同源染色体的自由组合形成各种不同的配子,雌雄配子结合产生基因型各不相同的后代,这种重组过程虽然也导致基因型的变化,但是由于它不涉及DNA分子内的断裂-复合,因此,不包括在狭义的基因重组的范围之内。

意义:是生物多样性的重要原因之一;为生物变异提供极其丰富的来源,对生物进化具有重要意义。

5.基因重组与基因突变的比较

基因突变 基因重组 本质

基因的分子结构发生改变,产生了新基因,出现了新性状 不同基因的重新组合,不产生新基因,而是产生新基因型,使之性状重新组合 发生时间及原因 细胞分裂间期DNA分子复制时,由于 外界理化因素或自身生理因素引起的碱基对的替换、增添或缺失 减数第一次分裂过程中,同源染色体的非姐妹染色单体间交叉互换,以及非同源染色体上基因自由组合 条件 外界条件的剧变和内部因素的相互作用 不同个体之间的杂交,有性生殖过程中进行减数分裂形成生殖细胞 意义 生物变异的根本来源,是生物进化的原材料 是生物变异的重要因素,通过杂交育种性状的重组,可培育出新的优良品种 发生可能 突变频率低,但普遍存在 有性生殖中非常普遍 6.染色体结构的变异及其类型 染色体结构变异包括缺失、重复、倒位和易位四种类型。   缺失 缺失是指染色体上某一区段及其带有的基因一起丢失, 中间缺失 顶端缺失。缺失引起的遗传效应随着缺失片段大小和细胞所处发育时期的不同而不同。在个体发育中,缺失发生得越早,影响越大缺失的片段越大,对个体的影响也越严重,重则引起个体亡,轻则影响个体的生活力。在人类遗传中,染色体缺失常会引起较严重的遗传性疾病,如猫叫综合征等。  重复 染色体上增加了相同的某个区段而引起变异的现象,叫做重复。但是如果重复的部分太大,也会影响个体的生活力,甚至引起个体亡。例如,果蝇由正常的卵圆形眼变为棒状眼的变异,就是X染色体上某一区段重复的结果。  倒位 染色体在两个点发生断裂后,产生三个区段,中间的区段发生180 的倒转,与另外两个区段重新接合而引起变异的现象,叫做倒位。例如,普通果蝇的第3号染色体上有三个基因按猩红眼-桃色眼-三角翅脉的顺序排列(St-P-Dl);同是这三个基因,在另一种果蝇中的顺序是St-Dl-P,仅仅这一倒位的差异便构成了两个物种之间的差别。  易位 易位是指一条染色体的某一片段移接到另一条非同源染色体上,从而引起变异的现象。如果两条非同源染色体之间相互交换片段,叫做相互易位,这种易位比较常见。相互易位的遗传效应主要是产生部分异常的配子,使配子的育性降低或产生有遗传病的后代。例如,慢性粒细胞白血病,就是由人的第22号染色体和第14号染色体易位造成的。易位在生物进化中具有重要作用。例如,在17个科的29个属的种子植物中,都有易位产生的变异类型,直果曼陀罗的近100个变种,就是不同染色体易位的结果。

① 一个染色体组中不含同源染色体; ② 一个染色体组中所含的染色体形态、大小和功能各不相同; ③ 一个染色体组中含有控制一种生物性状的一整套基因,但不能重复。

(2)单倍体和多倍体的比较

单倍体 多倍体 概念 体细胞中含有本物种配子染色体数目的个体 由受精卵发育而成的,体细胞中含有三个或三个以上染色体组的个体 自然形成原因 由未经受精作用的卵细胞发育而形成单倍体 由于受自然条件剧烈变化的影响,有丝分裂过程受到阻碍,细胞核内染色体数目加倍。通过减数分裂形成染色体数目也相应加倍的生殖细胞,再经受精作用形成合子而发育成多倍体 人工诱导方法 花药离休培养 用秋水仙素处理萌发的种子或幼苗 植株特点 植株弱小,高度不育 茎秆粗壮,叶片、果实和种子都比较大,糖类和蛋白质等营养成分的含量都 有所增高,但发育延迟,结实率降低 意义 单倍体幼苗时,用秋水仙素处理,使染色体数目加倍,可迅速获得纯系植株,缩短育种年限,提高育种效率 选育多倍体新品种,如三倍体无子西瓜、八倍体小黑麦等 (3)同源多倍体和异源多倍体

同源多倍体指体细胞内增加的染色体组来自同一物种,即原来的染色体加倍形成的(如四倍体水稻、无子西瓜等)。异源多倍体指体细胞中各个染色体组来自不同的种甚至不同的属而形成的多倍体(如普通六倍体小麦、八倍体小黑麦等)。

(4)多倍体育种与单倍体育种的比较

① 多倍体育种:

② 单倍体育种:

③ 比较:

多倍体育种 单倍体育种 原理 染色体成倍增加 染色体组成倍减少,再加倍后得到纯种9指每对染色体上成对的基因都是纯合的) 常用方法 秋水仙素处理萌发的种子、幼苗 花药的离休培养后,人工诱导染色体加倍 优点 器官大,提高产量和营养成分 明显缩短育种年限 缺点 适用于植物,在动物方面难以开展 技术复杂一些,须与杂交育种配合 8.低温诱导植物染色体数目的变化

用秋水仙素作用于正在分裂的细胞时,能够纺缍体的形成,导致染色体不能移向细胞两极,从而引起细胞内染色体数目加倍,染色体数目加倍的细胞继续进行有丝分裂,将来就可能发育成多倍体植株。而本实验中利用低温诱导染色体数目的变化,低温的作用与秋水仙素的作用基本相似。与秋水仙素相比,低温条件容易创造和控制,成本低、对人体无害、易于操作。但通过显微镜观察时,只能观察到染色体数目的增加,增加的具体数目不容易确定。

9.遗传病的类型和实例

人类遗传病的类型 定义 实例 单基因遗传病 显性遗传病 由显性致病基因引起的遗传病 多指、并指等 隐性遗传病 由隐性致病基因引起的遗传病 白化病、苯酮尿症等 多基因遗传病 受两对以上的等位基因控制的遗传病 原发性高血压等 染色体异常遗传病 由染色体异常引起的遗传病 21三体综合征等。

10.先天性疾病、家族性疾病和遗传病的比较

先天性疾病不一定都是遗传病,后天性疾病不一定不是遗传病。所谓先天性疾病是指出生前既已形成的畸形或疾病。当一种畸形或疾病是由遗传决定的内因所致,而且在胎儿出生前,染色体畸形或致病基因就已表达或形成,这种先天性疾病当然是遗传病,例如并指、先天性聋哑,白化病,先天愚型等。但是,在胎儿发育过程中,由于环境因素的偶然影响,胎儿的器官发育异常,形成形态和机能的改变,也会导致先天性畸形或出生缺陷。例如母亲在妊娠前三个月内感染风疹病毒,可使胎儿产生先天性心脏病,这不是遗传物质的改变造成的,而是胚胎发育过程受到环境因素的干扰所致,虽是先天性的,但不是遗传病。

家族性疾病是指一个家族中有多个成员患同一种病,即某一种疾病有家族史。在遗传病中显性遗传病往往也表现出明显的家族性倾向,如多指、多发性结肠息肉,抗维生素D佝偻病等。但是,遗传性疾病不一定有家族史。例如,隐性遗传病,由于患者的父母都是杂合子,所以表现型都正常,在患这类遗传病的家族中,发病的机会较少,所以家族中病例常常是散发的难以表现出家族性倾向,如果不是近亲结婚,往往在子代中只有少数的患者。

家族性疾病也不一定都是遗传病。这是因为同一家系的多个成员中,由于环境因素相同,也可能都患有相同的疾病,例如,由于饮食中缺少维生素A,一家中多个成员都可以患夜盲症。

11.人类基因组计划与人体健康

(1)人类基因组

指人体DNA分子所携带的全部遗传信息.人的单倍体基因组由23条双链的DNA分子组成,上面有3×109个碱基对,估计有3.5万个基因。

(2)人类基因组计划(HGP,HumanGenome Project)

研究人类的基因组,分析人类基因组的脱氧核苷酸序列,从而解读所有的遗传密码,揭示生命的所有奥秘。

(3)人类基因组计划的主要目标

完成对人的基因组的3×109个碱基对的全部序列测定工作.阐明人体中全部基因的位置、功能、结构、表达调控方式及致病突变的全部信息。

其主要内容包括绘制人类基因组的四张图,即遗传图、物理图、序列图和转录图(参与该计划的国家有美、英、日、法,德、中)。

(4)人类基因组计划的研究工作

① 对人的基因组进行分组.例如.可根据染色体不同分为24组.而每条染色体又可分为长臂区、短臂区、带和亚带等。

② 对人的基因组进行标记,即为每条染色体或更小的区域都找到一些特定的DNA序列作为标志。

③ 利用已知的标记序列,将已克隆的基因组DNA进行排序。

④ 克隆并测定人的基因组的全部序列。

⑤ 具体研究每一个基因的结构、功能、表达调控等性质。

(5)我国加盟人类基因组计划

1999年9月,中科院遗传所人类基因组中心与国家人类基因组南方和北方中心共同承担了国际人类基因组大规模测序任务的1%。即3号染色体短臂从D333610至端粒的30Mb区域上3000万个碱基对的测序任务。

在人类众多基因中.人们最关心的还是与各种疾病相关的基因。据估计,与人类疾病相关的基因约有5000个,至今已有1500个与疾病相关的基因被分离和确认。破译这些基因的突破口是获得具有遗传病家系的血样,再进行DNA分析、测定。我国有占世界22%的人口,拥有56个民族及206个民族关系,是一个少有的多样性基因国家。由于经济文化落后,长期地理环境隔绝和通婚范围狭小等原因,我国的遗传病家系非常丰富。谁先获得遗传病家系的血样,谁就可以最先破泽,进而获取专利,从而垄断该项生物工程产品的未来市场.我国是人类基因组计划的加盟者,有资源共享的优势,将为我国今后的生物工程产业,特别是医药行业带来无限经济效益。

(6)完成人类基因组计划的意义

① 可以使人类进一步加深对自身的了解,给整个生命科学甚至整个人类社会带来巨大影响。

② 对人类基因组的精确了解,有助于对人类基因的表达调控等进行更为深人的研究。

③ 获得人类的全部基因序列,特有助于人类认识许多遗传疾病以及癌症的致病机理,为分子诊断、基因治疗等提供理论依据,并有助于人们了解人体的发育过程,增强人类健康。

④ 对进一步了解人类细胞的生长、分化和个体发育的机制以及生物的进化等有重要意义。

⑤ 人类基因组计划的实施,将推动生物高新技术的发展并产生巨大的经济效益。

移码突变

基因突变是指基因组DNA分子发生的突然的可遗传的变异。从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。

分子基础:

一、自发突变(spontaneous mutation)

自发突变可能由复制错误、DNA损伤和转座作用等引起。

1.DNA复制错误(errors of DNA replication)

DNA碱基有互变异构体,造成DNA复制过程中的DNA错配。

(1)转换:Purine→ Pu;或者 Pyrimidine→ Py

(2)颠换:Pu →Py; 或者Py→Pu

(3)移码突变:增加或减少几个碱基,导致蛋白质翻译错位。

(4)缺失和重复:大片段碱基的缺失或重复,如E.coli乳糖发酵调节基因lacⅠ中四碱基重复序列。

野生型: 5‘-GTCTGGCTGGCTGGC-3’

突变型FS5: 5‘-GTCTGGCTGGCTGGCTGGC-3’

突变型FS2: 5‘-GTCTGGCTGGC-3’

2、DNA损伤(lesions)

(1)脱嘌呤 由于碱基和脱氧核糖间的糖苷键受到破坏,从而引起一个鸟嘌呤或腺嘌呤从DNA分子上脱落下来.

(2)脱氨基 C脱氨基变成U;A脱氨基变成H,:

A A?T →→ → H-T→→→ H-C→→→ H-C

↘→A-T ↘→G-C

B G?C →→ → G-U→→→ A-U→→→A-U

↘→G-C ↘→A-T

造成转换

(3)氧化损伤(oxidative lesions): O2- OH- H2O2

可对DNA造成损伤

二、诱发突变(induced mutaion)

多种理化因素都可以诱导DNA的突变:

1、诱变机制

(1)碱基类似物 例:5-BU 和5-BrdU是胸腺嘧啶(T)的结构类似物,酮式结构易与A配对;烯醇式结构易与G配对。另有2-氨基嘌呤(2-AP, A类似物)、5- 氟尿嘧啶、5-氯尿嘧啶等。

(2) 特异性错配 例烷化剂: 甲磺酸乙酯(EMS)、亚硝基胍( NG)、芥子气等。通过改变碱基结构使碱基错配。

如:G-C; 当G烷基化后可与T配对,导致碱基转换。

或者烷化剂使嘌呤脱落,造成转换、颠换、断裂或其他突变

子 (3) 嵌合剂的致突作用

例 .吖啶类染料: 吖啶橙、吖啶黄素、原黄素等碱基对的类似物,易造成移码突变。

(4) 辐射诱导效应

①紫外线UV:形成嘧啶二聚体,如T二聚体,①同一条单链内,影响复制时与A的配对,使复制中止;②双链之间,影响双链变性,并影响复制。

重复、缺失、移码突变

②电离辐射:如X-ray、可引起碱基的降解或脱落,A变成H;C变成T,出现转换。

物理——物理化学——生物化学——大分子损伤

ⅴ黄曲霉的作用

使鸟嘌呤G脱落,SOS修复引入A, 造成突变。

2、碱基替换的遗传效应

(ⅰ) 同义突变(samesense mutation)不改变氨基酸的密码子变化,与密码子的兼并性有关. 如GAU/GAC—Asp.

(ⅱ) 错义突变(missense mutation) 碱基替换的结果引起氨基酸序列的改变.

(ⅲ) 无义突变(nonsense mutation)编码区的单碱基突变导致终止密码子(UAG/UGA/UAA)的形成, 使 mRNA的翻译提前终止, 形成不完全的肽链.

如镰刀型贫血症:血红蛋白B链(146Aa),6号氨基酸的替换, 导致明显的表型症状。Glu→Val, 若Glu →Asp则影响较小。

3、码突变及其产生

在基因的外显子中插入或缺失1, 2或4个核苷酸,使阅读信息发生错位,从而使翻译的蛋白质序列与原来完全不同. eg. E.coli中乳糖发酵的调节基因(lacⅠ):

野生型: 5‘-GTCTGGCTGGCTGGC-3’

移码突变Ⅰ: 5‘-GTCTGGCTGGCTGGCTGGC-3’

移码突变 Ⅱ: 5‘-GTCTGGCTGGC-3’

4、突变热点和增变基因

基因中某些位点比其它位点突变率高,称突变热点。

例 分析T4-Phage r Ⅱ基因1500个突变体: r ⅡA (1800bp)有200个位点; r ⅡB (850bp)有108个位点 。

形成原因:

(1)、 5-MeC的存在,5-甲基胞嘧啶(MeC)脱氨基后变成T, 使G-C部位转变成A-T部位;

(2)短的重复序列的存在,容易配对错位,造成重复或缺失

(3)与诱变剂类型有关,不同诱变剂出现不同的热点。

( 4)增变基因(mutator gene):该基因的突变会使整个基因组的突变频率增高,例 A. DNA多聚酶基因,突变后使多聚酶的3’ → 5’校正功能降低或丧失,使基因组突变频率增高;

B. dam基因,突变后使碱基的错配修复功能降低或丧失,使基因组突变频率增高。

三、诱变与肿瘤

肿瘤的形成与否取决于机体中癌基因和抑癌基因的平衡,抑癌基因突变会致癌。一些诱变剂可以特异性的诱导抑癌基因突变,导致肿瘤发生。eg. 黄曲霉素、UV(ultraviolet)等。

黄曲霉素可诱导P53基因G → T颠换,导致肝癌的发生;

UV可诱导P53基因5’ -TC-3’发生C → T颠换,形成“T二聚体”,导致人类鳞状细胞皮肤癌的发生。

四、定点诱变

定义:利用人工合成的寡核苷酸,在离体的条件下,制造基因中任何部位的位点特异性突变的技术。

反义遗传学(reverse genetics):合成—连接(单链M13)—复制—转化—检测

首先解释一下移码突变,指的是诱变剂使DNA序列中的一个或少数几个核苷酸发生增添(插入)或缺失,从而使该处后面的全部遗传密码的阅读框架发生改变,并进一步引起转录和转译错误的一类突变。

需要明确的一点是该突变仅针对突变发生处的编码基因,即仅作用于该开放阅读框内的基因,是一种点突变,其结果只涉及有关基因中突变点后面的遗传密码阅读框架发生错误,因此除涉及这一基因外,并不影响突变点后其他基因的正常读码。