吖啶类化合物可引起-吖啶类染料常可引起DNA的

细菌的遗传物质在细胞特定的区域内。

细胞核是遗传的控制中心,里面有遗传基因。细菌没有核膜,只有遗传物质集中的部位,故细菌的基因存在于未成形的细胞核中,即细胞特定的区域内。

细菌和其它原核生物一样,只有拟核,没有核膜,DNA集中在细胞质中的低电子密度区,称核区或核质体(nuclear body)。细菌一般具有1-4个核质体,多的可达20余个。

核质体是环状的双链DNA分子,所含的遗传信息量可编码2000~3000种蛋白质,空间构建十分精简,没有内含子。由于没有核膜,因此DNA的复制、RNA的转录与蛋白质的合成可同时进行,而不像真核细胞的这些生化反应在时间和空间上是严格分隔开来的。

扩展资料:

细菌繁殖方式

细菌主要以无性二分裂方式繁殖(裂殖),即细菌生长到一定时期,在细胞中间逐渐形成横隔,由一个母细胞分裂为两个大小相等的子细胞。细胞分裂是连续的过程,分裂中的两个子细胞形成的同时,在子细胞的中间又形成横隔,开始细菌的第二次分裂。

有些细菌分裂后的子细胞分开,形成单个的菌体,有的则不分开,形成一定的排列方式,如链球菌、链杆菌等。

细菌繁殖速度快,一般细菌约20~30min便分裂一次,即为一代。接种子肉汤培养中的细菌在适宜的温度下迅速生长繁殖,肉汤很快即可变浑浊,表明有细菌的大量生长,有些细菌,如结核分枝杆菌的繁殖速度较慢,需要15-18小时才能繁殖一代。

百度百科-细菌

核质和质粒都是细菌生存必须的吗?耐药性基因一般分布在核质还是质粒上?

1 .基因突变的类型

突变是指发生在遗传物质上的变异。广义上突变可以分为两类:染色体畸变和基因突变。狭义突变通常指基因突变,它是指DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变,包括单个碱基改变所引起的点突变,或多个碱基的缺失、重复和插入。如果按照碱基顺序改变类型区分,突变可以分为碱基置换突变、移码突变、整码突变、染色体错误配对和不等交换4种。

(1) 碱基置换突变:由一个碱基被另一个碱基取代而造成的突变叫碱基置换突变。例如在 DNA 分子中的 GC 碱基对由 CG 或 AT 或 TA 所代替, AT 碱基对由 TA 或 GC 或 CG 所代替。碱基替换过程只改变被替换碱基的那个密码子,也就是说每一次碱基替换只改变一个密码子,不会涉及到其他的密码子。根据碱基置换对多肽链中氨基酸顺序的影响,可以将突变分为同义突变、错义突变、无义突变和终止码突变4种类型。

① 同义突变:由于密码子具有简并性,因此,单个碱基置换可能只改变mRNA上的特定密码子,但不影响它所编码的氨基酸。例如,DNA分子模板链中GCG的第三位G被A取代而成GCA,则mRNA中相应的密码子CGC就被转录为CGU,由于CGC和CGU都是精氨酸的密码子,因而新形成的多肽链没有氨基酸顺序和数目的变化,这种突变称为同义突变。

② 错义突变:是指DNA分子中的碱基置换不仅改变了mRNA上特定的遗传密码,而且导致新合成的多肽链中一个氨基酸被另一氨基酸所取代这种情况称为错义突变。错义突变往往导致产生功能异常的蛋白质。

③ 无义突变:当单个碱基置换导致出现终止密码(UAG、UAA、UGA)时,多肽链将提前终止合成,所产生的蛋白质大都失去活性或丧失正常功能,此种突变称为无义突变。例如,DNA分子模板链中ATG的G被T代替时,相应的mRNA上的密码子便从UAC变成终止信号UAA,因此翻译到此为止,使肽链缩短。

④ 终止密码突变:当DNA分子中一个终止密码发生突变成为编码氨基酸的密码子时,多肽链的合成将不能正常终止,肽链将继续延长直至遇到下一个终止密码子,因而形成了延长的异常肽链,这种突变称为终止密码突变,属于一类延长突变。

此外还有抑制基因突变。如果基因内部不同位置上的不同碱基分别发生突变,使其中一次突变抑制了另一次突变的遗传效应,这种突变称为抑制基因突变。

(2)移码突变

移码突变是指DNA链上插入或缺失1个、2个甚至多个碱基(但非3个碱基可3的整数倍的碱基),导致在插入或缺失碱基部位以后的密码子顺序和组成发生相应改变。由于原来的密码子移位,终止密码子常常推后或提前出现,结果造成新合成的肽链延长或缩短。

(3)整码突变:如果在DNA链的密码子之间插入或缺失一个或几个密码子,则合成的肽链将增加或减少一个或几个氨基酸,但敫或缺失部位的前后氨基酸顺序不变。这种突变黍为整码突变,也称密码子插入或缺失。

2 .诱发基因突变的因素及其作用机理

(1)物理诱变因素:各种射线,如X射线、 γ 射线、 α 射线、 β 射线和中子等都能诱发基因突变,当这线辐射作用于生物体时,首先从细胞中各种物质的原子或分子的外层击出电子,引起这些物质的原子或分子的电离和激发。当细胞内的染色体或DNA分子在射线的作用下产生电离和激发时,它们的结构就会改变,这是电离辐射的直接作用。电离辐射有累加效应,小剂量长期照射与大剂量短期照射的诱变效果相同。

(2)化学诱变因素:一些化学物质和辐射一样能够引起生物体发生基因突变。有三种类型:一类是能够改变DNA化学结构的诱变剂,如亚硝酸和烷化剂;一类是碱基类似物,它们的分子结构与DNA分子中的碱基十分相似。在DNA分子复制时,这些碱基类似物能够以假乱真,作为DNA的组成成分加入到DNA分子中,从而引起基因突变。常见的碱基类似物有5-溴尿嘧啶、2-氨基嘌呤等;还有一类是吖啶类化合物,它们可以插入DNA分子结构中,使DNA分子在复制或转录时出现 差错而导致突变。

(3)病毒诱变因素:某些病毒进入宿主细胞后能够干扰宿主细胞正常的DNA复制也会引起基因突变。

3 .基因突变的特点和意义

(1)普遍性 即生物界中,基因突变是普遍存在的。基因的多样性导致了自然界中的生物的种类、结构、性状具有多样性,而基因在一定条件下就有可能发生突变。其中自然条件下发生的基因突变称为自然突变,人为条件下诱发产生的基因突变叫做诱发突变。

(2)随机性 因为基因突变发生在DNA复制过程中,而绝大多数生物都具有DNA,在生物个体发育过程中,随时都进行着细胞分裂,并且进行着DNA的复制,只要条件改变,就随时都有可能发生突变。基因突变如果发生在体细胞中一般不能传递给后代,如果发生在生殖细胞中,则可以通过受精作用直接传递给后代。

(3)不定向性 同一个基因可以向不同方向发生突变,产生一系列不同的等位基因,即产生复等位基因。突变时也可以再一次突变回到原来那个基因。

(4)低频性 因为生物体内的DNA分子结构具有相对的稳定性,且DNA复制时一般都会严格遵循碱基互补配对原则,因此,发生基因突变的机率是很低的。

(5)多害少利性 因为任何一种生物都是经过长期自然选择的产物,它们与环境条件已经取得了高度的协调关系;如果发生基因突变,就有可能破坏这种关系,因而对生物的生存往往是有害的。

意义:基因突变对生物进化具有重要意义,它是生物变异的根本来源,为生物进化提供了最新的原材料。因为没有基因突变,就不会产生等位基因,就不可能发生基因重组,而生物进化的内因是遗传与变异。

4.基因重组及意义

从广义上讲,任何造成基因型变化的基因交流过程,都叫做基因重组。而狭义的基因重组仅指涉及DNA分子内断裂-复合的基因交流。真核生物在减数分裂时,通过非同源染色体的自由组合形成各种不同的配子,雌雄配子结合产生基因型各不相同的后代,这种重组过程虽然也导致基因型的变化,但是由于它不涉及DNA分子内的断裂-复合,因此,不包括在狭义的基因重组的范围之内。

意义:是生物多样性的重要原因之一;为生物变异提供极其丰富的来源,对生物进化具有重要意义。

5.基因重组与基因突变的比较

基因突变 基因重组 本质

基因的分子结构发生改变,产生了新基因,出现了新性状 不同基因的重新组合,不产生新基因,而是产生新基因型,使之性状重新组合 发生时间及原因 细胞分裂间期DNA分子复制时,由于 外界理化因素或自身生理因素引起的碱基对的替换、增添或缺失 减数第一次分裂过程中,同源染色体的非姐妹染色单体间交叉互换,以及非同源染色体上基因自由组合 条件 外界条件的剧变和内部因素的相互作用 不同个体之间的杂交,有性生殖过程中进行减数分裂形成生殖细胞 意义 生物变异的根本来源,是生物进化的原材料 是生物变异的重要因素,通过杂交育种性状的重组,可培育出新的优良品种 发生可能 突变频率低,但普遍存在 有性生殖中非常普遍 6.染色体结构的变异及其类型 染色体结构变异包括缺失、重复、倒位和易位四种类型。   缺失 缺失是指染色体上某一区段及其带有的基因一起丢失, 中间缺失 顶端缺失。缺失引起的遗传效应随着缺失片段大小和细胞所处发育时期的不同而不同。在个体发育中,缺失发生得越早,影响越大缺失的片段越大,对个体的影响也越严重,重则引起个体亡,轻则影响个体的生活力。在人类遗传中,染色体缺失常会引起较严重的遗传性疾病,如猫叫综合征等。  重复 染色体上增加了相同的某个区段而引起变异的现象,叫做重复。但是如果重复的部分太大,也会影响个体的生活力,甚至引起个体亡。例如,果蝇由正常的卵圆形眼变为棒状眼的变异,就是X染色体上某一区段重复的结果。  倒位 染色体在两个点发生断裂后,产生三个区段,中间的区段发生180 的倒转,与另外两个区段重新接合而引起变异的现象,叫做倒位。例如,普通果蝇的第3号染色体上有三个基因按猩红眼-桃色眼-三角翅脉的顺序排列(St-P-Dl);同是这三个基因,在另一种果蝇中的顺序是St-Dl-P,仅仅这一倒位的差异便构成了两个物种之间的差别。  易位 易位是指一条染色体的某一片段移接到另一条非同源染色体上,从而引起变异的现象。如果两条非同源染色体之间相互交换片段,叫做相互易位,这种易位比较常见。相互易位的遗传效应主要是产生部分异常的配子,使配子的育性降低或产生有遗传病的后代。例如,慢性粒细胞白血病,就是由人的第22号染色体和第14号染色体易位造成的。易位在生物进化中具有重要作用。例如,在17个科的29个属的种子植物中,都有易位产生的变异类型,直果曼陀罗的近100个变种,就是不同染色体易位的结果。

① 一个染色体组中不含同源染色体; ② 一个染色体组中所含的染色体形态、大小和功能各不相同; ③ 一个染色体组中含有控制一种生物性状的一整套基因,但不能重复。

(2)单倍体和多倍体的比较

单倍体 多倍体 概念 体细胞中含有本物种配子染色体数目的个体 由受精卵发育而成的,体细胞中含有三个或三个以上染色体组的个体 自然形成原因 由未经受精作用的卵细胞发育而形成单倍体 由于受自然条件剧烈变化的影响,有丝分裂过程受到阻碍,细胞核内染色体数目加倍。通过减数分裂形成染色体数目也相应加倍的生殖细胞,再经受精作用形成合子而发育成多倍体 人工诱导方法 花药离休培养 用秋水仙素处理萌发的种子或幼苗 植株特点 植株弱小,高度不育 茎秆粗壮,叶片、果实和种子都比较大,糖类和蛋白质等营养成分的含量都 有所增高,但发育延迟,结实率降低 意义 单倍体幼苗时,用秋水仙素处理,使染色体数目加倍,可迅速获得纯系植株,缩短育种年限,提高育种效率 选育多倍体新品种,如三倍体无子西瓜、八倍体小黑麦等 (3)同源多倍体和异源多倍体

同源多倍体指体细胞内增加的染色体组来自同一物种,即原来的染色体加倍形成的(如四倍体水稻、无子西瓜等)。异源多倍体指体细胞中各个染色体组来自不同的种甚至不同的属而形成的多倍体(如普通六倍体小麦、八倍体小黑麦等)。

(4)多倍体育种与单倍体育种的比较

① 多倍体育种:

② 单倍体育种:

③ 比较:

多倍体育种 单倍体育种 原理 染色体成倍增加 染色体组成倍减少,再加倍后得到纯种9指每对染色体上成对的基因都是纯合的) 常用方法 秋水仙素处理萌发的种子、幼苗 花药的离休培养后,人工诱导染色体加倍 优点 器官大,提高产量和营养成分 明显缩短育种年限 缺点 适用于植物,在动物方面难以开展 技术复杂一些,须与杂交育种配合 8.低温诱导植物染色体数目的变化

用秋水仙素作用于正在分裂的细胞时,能够纺缍体的形成,导致染色体不能移向细胞两极,从而引起细胞内染色体数目加倍,染色体数目加倍的细胞继续进行有丝分裂,将来就可能发育成多倍体植株。而本实验中利用低温诱导染色体数目的变化,低温的作用与秋水仙素的作用基本相似。与秋水仙素相比,低温条件容易创造和控制,成本低、对人体无害、易于操作。但通过显微镜观察时,只能观察到染色体数目的增加,增加的具体数目不容易确定。

9.遗传病的类型和实例

人类遗传病的类型 定义 实例 单基因遗传病 显性遗传病 由显性致病基因引起的遗传病 多指、并指等 隐性遗传病 由隐性致病基因引起的遗传病 白化病、苯酮尿症等 多基因遗传病 受两对以上的等位基因控制的遗传病 原发性高血压等 染色体异常遗传病 由染色体异常引起的遗传病 21三体综合征等。

10.先天性疾病、家族性疾病和遗传病的比较

先天性疾病不一定都是遗传病,后天性疾病不一定不是遗传病。所谓先天性疾病是指出生前既已形成的畸形或疾病。当一种畸形或疾病是由遗传决定的内因所致,而且在胎儿出生前,染色体畸形或致病基因就已表达或形成,这种先天性疾病当然是遗传病,例如并指、先天性聋哑,白化病,先天愚型等。但是,在胎儿发育过程中,由于环境因素的偶然影响,胎儿的器官发育异常,形成形态和机能的改变,也会导致先天性畸形或出生缺陷。例如母亲在妊娠前三个月内感染风疹病毒,可使胎儿产生先天性心脏病,这不是遗传物质的改变造成的,而是胚胎发育过程受到环境因素的干扰所致,虽是先天性的,但不是遗传病。

家族性疾病是指一个家族中有多个成员患同一种病,即某一种疾病有家族史。在遗传病中显性遗传病往往也表现出明显的家族性倾向,如多指、多发性结肠息肉,抗维生素D佝偻病等。但是,遗传性疾病不一定有家族史。例如,隐性遗传病,由于患者的父母都是杂合子,所以表现型都正常,在患这类遗传病的家族中,发病的机会较少,所以家族中病例常常是散发的难以表现出家族性倾向,如果不是近亲结婚,往往在子代中只有少数的患者。

家族性疾病也不一定都是遗传病。这是因为同一家系的多个成员中,由于环境因素相同,也可能都患有相同的疾病,例如,由于饮食中缺少维生素A,一家中多个成员都可以患夜盲症。

11.人类基因组计划与人体健康

(1)人类基因组

指人体DNA分子所携带的全部遗传信息.人的单倍体基因组由23条双链的DNA分子组成,上面有3×109个碱基对,估计有3.5万个基因。

(2)人类基因组计划(HGP,HumanGenome Project)

研究人类的基因组,分析人类基因组的脱氧核苷酸序列,从而解读所有的遗传密码,揭示生命的所有奥秘。

(3)人类基因组计划的主要目标

完成对人的基因组的3×109个碱基对的全部序列测定工作.阐明人体中全部基因的位置、功能、结构、表达调控方式及致病突变的全部信息。

其主要内容包括绘制人类基因组的四张图,即遗传图、物理图、序列图和转录图(参与该计划的国家有美、英、日、法,德、中)。

(4)人类基因组计划的研究工作

① 对人的基因组进行分组.例如.可根据染色体不同分为24组.而每条染色体又可分为长臂区、短臂区、带和亚带等。

② 对人的基因组进行标记,即为每条染色体或更小的区域都找到一些特定的DNA序列作为标志。

③ 利用已知的标记序列,将已克隆的基因组DNA进行排序。

④ 克隆并测定人的基因组的全部序列。

⑤ 具体研究每一个基因的结构、功能、表达调控等性质。

(5)我国加盟人类基因组计划

1999年9月,中科院遗传所人类基因组中心与国家人类基因组南方和北方中心共同承担了国际人类基因组大规模测序任务的1%。即3号染色体短臂从D333610至端粒的30Mb区域上3000万个碱基对的测序任务。

在人类众多基因中.人们最关心的还是与各种疾病相关的基因。据估计,与人类疾病相关的基因约有5000个,至今已有1500个与疾病相关的基因被分离和确认。破译这些基因的突破口是获得具有遗传病家系的血样,再进行DNA分析、测定。我国有占世界22%的人口,拥有56个民族及206个民族关系,是一个少有的多样性基因国家。由于经济文化落后,长期地理环境隔绝和通婚范围狭小等原因,我国的遗传病家系非常丰富。谁先获得遗传病家系的血样,谁就可以最先破泽,进而获取专利,从而垄断该项生物工程产品的未来市场.我国是人类基因组计划的加盟者,有资源共享的优势,将为我国今后的生物工程产业,特别是医药行业带来无限经济效益。

(6)完成人类基因组计划的意义

① 可以使人类进一步加深对自身的了解,给整个生命科学甚至整个人类社会带来巨大影响。

② 对人类基因组的精确了解,有助于对人类基因的表达调控等进行更为深人的研究。

③ 获得人类的全部基因序列,特有助于人类认识许多遗传疾病以及癌症的致病机理,为分子诊断、基因治疗等提供理论依据,并有助于人们了解人体的发育过程,增强人类健康。

④ 对进一步了解人类细胞的生长、分化和个体发育的机制以及生物的进化等有重要意义。

⑤ 人类基因组计划的实施,将推动生物高新技术的发展并产生巨大的经济效益。

质粒在细菌间的转移方式主要是

核质和质粒都是细菌生存必须的,耐药性基因一般分布在质粒上

1.质粒并非细菌生存所必不可少的遗传物质。细菌如失去染色体,则不能生存;然而细菌失去质粒后仍能生存。这是由于染色体DNA携带的基因所编码的产物,在细菌新陈代谢中是生存所必须者;而质粒携带的基因所编码的产物并非细菌的生存所必须者。因此质粒可以在细菌间传递与丢失。

2.质粒的传递(转移)是细菌遗传物质转移的一个重要方式。有些质粒本身即具有转移装置,如耐药性质粒(R质粒);而有些质粒本身无转移装置,需要通过媒介(如噬菌体)转移或随有转移装置的质粒一起转移。获得质粒的细菌可随之而获得一些生物学特性,如耐药性或产生细菌素的能力等。

3.质粒可自行失去或经人工处理而消失。在细菌培养传代过程中,有些质粒可自行从宿主细菌中失去。这种丢失不像染色体突变发生率很低,而是较易发生。用紫外线、吖啶类染料及其他可以作用于DNA的物理、化学因子处理后,可以使一部分质粒消失,称为消除。目前学者们感兴趣的是如何通过人工处理消除耐药质粒或与致病性有关的质粒。

下列哪种突变可引起移码突变 A.转换和颠换 B.颠换 C.点突变 D.缺失 E.倒位

质粒在细菌间的转移方式主要是

接合

质粒在细菌间的转移方式主要是接合,通过性菌毛的作用从供体菌传递给受体菌。

1、接合作用:当细菌与细菌相互接触时,质粒DNA就可从一个细菌转移到另一个细菌。

2、转化作用:由外源性DNA导入宿主细胞,并引起生物类型改变或使宿主细胞获得新的遗传表型的过程,称为转化作用。

3、转导作用:当病毒从被感染的细胞释放出来,再次感染另一细胞时,发生在供体细胞与受体细胞之间的DNA转移及基因重组称为转导作用。

4、转座(转位):转座是指一个或一组基因从一个位置转到基因组的另一个位置。可分为插入序列转座和转座子转座。

5、基因重组:不同DNA分子间发生的共价连接称基因重组。有两种类型:位点特异的重组和同源重组。

基因水平转移的形成因素:

1、由质粒或病毒等介导的水平基因转移质粒和病毒是在各生物间进行遗传物质传递的重要媒介。

2、基因的“直接”水平转移水平基因转移除了通过质粒和病毒为媒介以外,大量发现的是不需要媒介的“直接”转移。

3、基因组序列分析和水平基因转移随着基因工程的深入开展,人类及其它生物基因组测序工作相继完成,人们发现不同物种之间,甚至亲缘关系很远的生物之间基因组上有大量同源基因存在。

4、水平基因转移与进化由前可知,水平基因转移实际上已被引入了分子进化及宏观进化领域,被认为是推动进化的重要动力。

细菌的遗传物质是什么

D。

移码突变是诱变剂使DNA序列中的一个或少数几个核苷酸发生增添(插入)或缺失,从而使该处后面的全部遗传密码的阅读框架发生改变,并进一步引起转录和转译错误的一类突变。

需要明确的一点是该突变仅针对突变发生处的编码基因,即仅作用于该开放阅读框内的基因,是一种点突变,其结果只涉及有关基因中突变点后面的遗传密码阅读框架发生错误,因此除涉及这一基因外,并不影响突变点后其他基因的正常读码。

扩展资料:

在移码突变中,如果所形成的错误密码中包含有终止密码,则肽链还会缩短,而产生一个无功能的肽链片段。发生移码突变后由于基因所编码的蛋白质活性改变较大,所以较易成为致性突变。?

在自发突变中,移码突变占很大比例。移码突变所造成的DNA损伤一般远远大于点突变。已知能诱发移码突变的诱变剂是吖啶类染料,如吖啶黄、吖啶橙、2-氨基吖啶等。

百度百科-移码突变

怎样能使鱼类基因突变,身体变形而不会

细菌的遗传物质是DNA。

所有细胞生物(真核生物,原核生物)细菌属原核生物都是DNA,病毒是DNA或RNA(只能是一种)。

细菌变异是细菌的基本属性之一。具有相同基因型的细菌,在不同的条件下,可呈现不同的特性。

遗传变异有利于物种的变化;而表型变异则因外界因素所致,常波及同一环境中的大多数个体,因遗传物质的结构未改变,其变化为可逆,表型变异不能遗传。

染色体DNA是细菌主要的遗传物质,由一条闭合环状的双链DNA分子构成,紧密缠绕成较致密的不规则小体,该小体又称为拟核,其上无组蛋白包绕,但有核蛋白。核蛋白与基因的活化及DNA的复制有关,有的与DNA结合在一起,类似真核细胞的组蛋白。

扩展资料:

在细菌等原核生物的基因组中,不编码的DNA序列很少,许多原核生物的已知基因数基本接近由它的DNA相对分子质量所估计的基因数,表明原核生物具有连续的基因结构,不含内含子,因此转录后一般不需要加工剪切即可产生成熟的RNA分子。

除了rRNA基因是多拷贝外,绝大多数基因保持单拷贝形式,很少有重复序列,功能相关的基因高度集中,组合成操纵子结构。

转位因子可以从染色体或质粒的一个位置转移到另一个位置, 或者在同一细胞的两个复制子之间转移,DNA片段的这种运动过程称为转位。目前已证实在真核及原核生物中均有存在,且某些噬菌体本身就是转位因子。

由于转位因子的转位行为,将使DNA分子发生插入突变和广泛的基因重排, 在促使生物变异及进化上具有重大意义。同时,转位因子也可作为遗传学和基因工程的重要工具。

百度百科——细菌变异

百度百科——细菌

基因突变是什么意思?

基因突变是基因组DNA分子发生的突然的、可遗传的变异现象(gene mutation)。从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。基因虽然十分稳定,能在细胞分裂时精确地复制自己,但这种稳定性是相对的。在一定的条件下基因也可以从原来的存在形式突然改变成另一种新的存在形式,就是在一个位点上,突然出现了一个新基因,代替了原有基因,这个基因叫做突变基因。于是后代的表现中也就突然地出现祖先从未有的新性状。 依个基因内部可以遗传的结构的改变。又称为点突变,通常可引起一定的表型变化。广义的突变包括染色体畸变。狭义的突变专指点突变。实际上畸变和点突变的界限并不明确,特别是微细的畸变更是如此。野生型基因通过突变成为突变型基因。突变型一词既指突变基因,也指具有这一突变基因的个体。 基因突变可以发生在发育的任何时期,通常发生在DNA复制时期,即细胞分裂间期,包括有丝分裂间期和减数分裂间期;同时基因突变和脱氧核糖核酸的复制、DNA损伤修复、癌变和衰老都有关系,基因突变也是生物进化的重要因素之一,所以研究基因突变除了本身的理论意义以外还有广泛的生物学意义。基因突变为遗传学研究提供突变型,为育种工作提供素材,所以它还有科学研究和生产上的实际意义。 种类 基因突变可以是自发的也可以是诱发的。自发产生的基因突变型和诱发产生的基因突变型之间没有本质上的不同,基因突变诱变剂的作用也只是提高了基因的突变率。 按照表型效应,突变型可以区分为形态突变型、生化突变型以及致突变型等。这样的区分并不涉及突变的本质,而且也不严格。因为形态的突变和致的突变必然有它们的生物化学基础,所以严格地讲一切突变型都是生物化学突变型。根据碱基变化的情况,基因突变一般可分为碱基置换突变(base substitution和移码突变(frameshift mutation)两大类。 碱基置换突变(subsititution) 指DNA分子中一个碱基对被另一个不同的碱基对取代所引起的突变,也称为点突变(point mutation)。点突变分转换和颠换两种形式。如果一种嘌呤被另一种嘌呤取代或一种嘧啶被另一种嘧啶取代则称为转换(transitioBU诱发的突变n)。嘌呤取代嘧啶或嘧啶取代嘌呤的突变则称为颠换(transversion)。由于DNA分子中有四种碱基,故可能出现四种转换和吧种颠换。在自然发生的突变中,转换多于颠换。 碱基对的转换可由碱基类似物的掺入造成。例如,5-溴尿嘧啶(5-bromouracil,BU)是一种与胸腺嘧啶类似的化合物,具有酮式和烯醇式 两种结构,且两者可以互变,一般酮式较易变为烯醇式。当DNA复制时,酮式BU代替了T,使A-T碱基对变为A-BU;第二次复制时,烯醇式BU能和G配对,故出现G-BU碱基对;第三次复制时,G和C配对,从而出现 G-C碱基对,这样,原来的A-T碱基对就变成G-C碱基对。 碱基对的转换也可由一些化学诱变剂诱变所致。例如,亚硝酸类能使胞嘧啶(C)氧化脱氨变成尿嘧啶(U),在下一 次复制中,U不与G配对,而与A配对;复制结果C-G变为T-A(见右图)。又如,烷化剂中的芥子气和硫酸二乙酯可使G发生乙基化,成为烷基化鸟嘌呤(mG),结果,mG不与C配对,而与T配对,经过复制,G-C变为A-T。 移码突变(translocation) 指DNA片段中某一位点插入或丢失一个或几个(非三或三的倍数)碱基对时,造成插入或丢失位点以后的一系列编码顺序发生错位的一种突变。它可引起该位点以后的遗传信息都出现异常。发生了移码突变的基因在表达时可使组成多肽链的氨基酸序列发生改变,从而严重影响蛋白质或酶的结构与功能。吖啶类诱变剂如原黄素、吖黄素、吖啶橙等由于分子比较扁平,能插入到DNA分子的相邻碱基对之间。如在DNA复制前插入,会造成依个碱基对的插入;若在复制过程中插入,则会造成依个碱基对的缺失,两者的结果都引起移码突变。 缺失突变(deletion) 基因也可以因为较长片段的DNA的缺失而发生突变。缺失的范围如果包括两个基因,那么就好象两个基因同时发生突变,因此又称为多位点突变。由缺失造成的突变不会发生回复突变。所以严格地讲,缺失应属于染色体畸变。 插入突变(insertion) 一个基因的DNA中如果插入一段外来的DNA,那么它的结构便被破坏而导致突变。大肠杆菌的噬菌体Mu-依和一些插入顺序(IS)以及转座子(见转座因子)都是能够转移位置的遗传因子,当它们转移到某一基因中时,便使这一基因发生突变。许多转座子上带有抗药性基因,当它们转移到某一基因中时,一方面引起突变,另一方面使这一位置上出现一个抗药性基因。插入的DNA分子可以通过切离而失去,准确的切离可以使突变基因回复成为野生型基因。这一事件的出现频率并不由于诱变剂的处理而提高。 特性 不论是真核生物还是原核生物的突变,也不论是什么类型的突变,都具有随机性、低频性和可逆性等共同的特性。 普遍性 基因突变在自然界各物种中普遍存在。 随机性 T.H.摩尔根在饲养的许多红色复眼的果蝇中偶然发现了一只白色复眼的果蝇。这一事实说明基因突变的发生在时间上、在发生这一突变的个体上、在发生突变的基因上,都是随机的。以后在高等植物中所发现的无数突变都说明基因突变的随机性。在细菌中则情况远为复杂。在含有某一种药物的培养基中培养细菌时往往可以得到对于这一药物具有抗性的细菌,因此曾经认为细菌的抗药性的产生是药物引起的,是定向的适应而不是随机的突变。S.卢里亚和M.德尔布吕克在依9四三年首先用波动测验方法证明在大肠杆菌中的抗噬菌体细菌的出现和噬菌体的存在无关。J.莱德伯格等在依95贰年又用印影接种方法证实了这一论点。方法是把大量对于药物敏感的细菌涂在不含药物的培养基表面,把这上面生长起来的菌落用一块灭菌的丝绒作为接种工具印影接种到含有某种药物的培养基表面,使得两个培养皿上的菌落的位置都一一对应。根据后一培养基表面生长的个别菌落的位置,可以在前一培养皿上找到相对应的菌落。在许多情况下可以看到这些菌落具有抗药性。由于前一培养基是不含药的,因此这一实验结果非常直观地说明抗药性的出现不依赖于药物的存在,而是随机突变的结果,只不过是通过药物将它们检出而已。 稀有性 在第一个突变基因发现时,不是发现若干白色复眼果绳而是只发现一只,说明突变是极为稀有的,也就是说野生型基因以极低的突变率发生突变(一些有代表性的基因突变率见表)。在有性生殖的生物中,突变率用每一配子发生突变的概率,也就是用一定数目配子中的突变型配子数表示。在无性生殖的细菌中,突变率用每一细胞世代中每一细菌发生突变的概率,也就是用一定数目的细菌在分裂一次过程中发生突变的次数表示。据估计,在高等生物中,大约依0^5~依0^吧个生殖细胞中,才会有依个生殖细胞发生基因突变。虽然基因突变的频率很低,但是当一个种群内有许多个体时,就有可能产生各种各样的随机突变,足以提供丰富的可遗传的变异。 可逆性 野生型基因经过突变成为突变型基因的过程称为正向突变。正向突变的稀有性说明野生型基因是一个比较稳定的结构。突变基因又可以通过突变而成为野生型基因,这一过程称为回复突变。从表中同样可以看到回复突变是难得发生的,说明突变基因也是一个比较稳定的结构。不过,正向突变率总是高于回复突变率,这是因为一个野生型基因内部的许多位置上的结构改变都可以导致基因突变,但是一个突变基因内部只有一个位置上的结构改变才能使它恢复原状。 少利多害性 一般基因突变会产生不利的影响,被淘汰或是亡,但有极少数会使物种增强适应性。 不定向性 例如控制黑毛A基因可能突变为控制白毛的a+或控制绿毛的a-基因。 有益性 一般基因突变是有害的,但是有极为少数的是有益突变。例如一只鸟的嘴巴很短,突然突变变种后,嘴巴会变长,这样会容易捕捉食物或水。 解释了一个鸟的基因突变或进化后的明显区别 一般,基因突变后身体会发出抗体或其他修复体进 行自行修复。可是有一些突变是不可回转性的。突变可能导致立即亡,也可以导致惨重后果,如器官无法正常运作,DNA严重受损,身体免疫力低下等。如果是 有益突变,可能会发生奇迹,如身体分泌中特殊变种细胞来保护器官,身体,或在一些没有受骨骼保护的部位长出骨骼。基因与DNA就像是每个人的身份证,可他 又是一个人的先知,因为它决定着身体的衰老、病变、亡的时间。 独立性 某一基因位点的一个等位基因发生突变,不影响另一个等位基因,即等位基因中的两个基因不会同时发生突变。 ①隐性突变:当代不表现,F贰代表现。 ②显性突变:当代表现,与原性状并存,形成镶嵌现象或嵌合体。 重演性 同一生物不同个体之间可以多次发生同样的突变

基因突变是指DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变,叫基因突变(gene mutation).它包括单个碱基改变所引起的点突变(point mutation),或多个碱基的缺失、重覆和插入.

在自然条件下发生的突变叫自发突变,由人工利用物理因素或化学药剂诱发的突变叫诱发突变.基因突变是生物变异的主要原因,是生物进化的主要因素.在生产上人工诱变是产生生物新品种的重要方法.

碱基置换突变:由一个错误的碱基对替代一个正确的碱基对的突变叫碱基置换突变.例如在DNA分子中的GC碱基对由CG或AT或TA所代替,AT碱基对由TA或GC或CG所代替.碱基替换过程只改变被替换碱基的那个密码子,也就是说每一次碱基替换只改变一个密码子,不会涉及到其他的密码子.引起碱基置换突变的原因和途径有两个.一是碱基类似物的掺入,例如在大肠杆菌培养基中加入5-溴尿嘧院(BU)后,会使DNA的一部分胸腺嘧啶被BU所取代,从而导致AT碱基对变成GC碱基对,或者GC碱基对变成AT碱基对.二是某些化学物质如亚硝酸、亚硝基胍、硫酸二乙酯和氮芥等,以及紫外线照射,也能引起碱基置换突变.

移码突变:基因中插入或者缺失一个或几个碱基对,会使DNA的阅读框架(读码框)发生改变,导致插入或缺失部位之后的所有密码子都跟着发生变化,结果产生一种异常的多肽链.移码突变诱发的原因是一些像吖啶类染料分子能插入DNA分子,使DNA复制时发生差错,导致移码突变.

根据遗传信息的改变方式,基因突变又可以分为同义突变、错义突变和无义突变三种类型.

基因突变的特点:

基因突变作为生物变异的一个重要来源,它具有以下主要特点:

第一,基因突变在生物界中是普遍存在的.无论是低等生物,还是高等的动植物以及人,都可能发生基因突变.基因突变在自然界的物种中广泛存在.例如,棉花的短果枝、水稻的矮杆、糯性,果蝇的白眼、残翅,家鸽羽毛的灰红色,以及人的色肓、糖尿病、白化病等遗传病,都是突变性状.自然条件下发生的基因突变叫做自然突变,人为条件下诱发产生的基因突变叫做诱发突变.

第二,基因突变是随机发生的.它可以发生在生物个体发育的任何时期和生物体的任何细胞.一般来说,在生物个体发育的过程中,基因突变发生的时期越迟,生物体表现突变的部分就越少.例如,植物的叶芽如果在发育的早期发生基因突变,那么由这个叶芽长成的枝条,上面着生的叶、花和果实都有可能与其他枝条不同.如果基因突变发生在花芽分化时,那么,将来可能只在一朵花或一个花序上表现出变异.

基因突变可以发生在体细胞中,也可以发生在生殖细胞中.发生在生殖细胞中的突变,可以通过受精作用直接传递给后代.发生在体细胞中的突变,一般是不能传递给后代的.

第三,在自然状态下,对一种生物来说,基因突变的频率是很低的.据估计,在高等生物中,大约十万个到一亿个生殖细胞中,才会有一个生殖细胞发生基因突变,突变率是105~108.不同生物的基因突变率是不同的.例如,细菌和噬菌体等微生物的突变率比高等动值物的要低.同一种生物的不同基因,突变率也不相同.例如,玉米的抑制色素形成的基因的突变率为1.06×10-4,而**胚乳基因的突变率为2.2×10-6.

第四,大多数基因突变对生物体是有害的,由于任何一种生物都是长期进化过程的产物,它们与环境条件已经取得了高度的协调.如果发生基因突变,就有可能破坏这种协调关系.因此,基因突变对于生物的生存往往是有害的.例如,绝大多数的人类遗传病,就是由基因突变造成的,这些病对人类健康构成了严重威胁.又如,植物中常见的白化苗,也是基因突变形成的.这种苗由于缺乏叶绿素,不能进行光合作用制造有机物,最终导致亡.但是,也有少数基因突变是有利的.例如,植物的抗病性突变、耐旱性突变、微生物的抗药性突变等,都是有利于生物生存的.

第五,基因突变是不定向的.一个基因可以向不同的方向发生突变,产生一个以上的等位基因.例如,控制小鼠毛色的灰色基因(A+)可以突变成**基因(AY).也可以突变成黑色基因(a).但是每一个基因的突变,都不是没有任何限制的.例如,小鼠毛色基因的突变,只限定在色素的范围内,不会超出这个范围.

例如英国女王维多利亚家族在她以前没有发现过血友病的病人,但是她的一个儿子患了血友病,成了她家族中第一个患血友病的成员.后来,又在她的外孙中出现了几个血友病病人.很显然,在她的父亲或母亲中产生了一个血友病基因的突变.这个突变基因传给了她,而她是杂合子,所以表现型仍是正常的,但却通过她传给了她的儿子.基因突变的后果除如上所述形成致病基因引起遗传病外,还可造成胎、自然流产和出生后天折等,称为致性突变;当然也可能对人体并无影响,仅仅造成正常人体间的遗传学差异;甚至可能给个体的生存带来一定的好处.