吖啶橙染色细胞凋亡-吖啶橙骨髓细胞染色
随着对FCM研究的日益深入,其价值已经从科学研究走入了临床应用 阶段,在我国临床医学领域里已有着广泛的应用。可用于白血病的分型、肿瘤细胞染色体的异倍性测定,以及免疫学研究,并已开始用于细菌鉴定,病毒感染细胞的识别和艾滋病感染者T4、T8细胞的记数。
自70年代以来,随着流式细胞技术水平的不断提高,其应用范围也日益广泛。流式细胞术已普遍应用于免疫学、血液学、肿瘤学、细胞生物学、细胞遗传学、生物化学等临床医学和基础医学研究领域。
在肿瘤学中的应用
这是FCM在临床医学中应用最早的一个领域。首先需要把实体瘤组织解聚、分散制备成单细胞悬液,用荧光染料(碘化吡啶PI)染色后对细胞的DNA含量进行分析,将不易区分的群体细胞分成三个亚群(G1期,S期和G2期),DNA含量直接代表细胞的倍体状态,非倍体细胞与肿瘤恶性程度有关。
(1)发现癌前病变,协助肿瘤早期诊断:人体正常组织发生癌变要经过一个由量变到质变的漫长过程,而癌前细胞即处于量变过程中向癌细胞转化阶段。人体正常的体细胞均具有比较稳定的DNA二倍体含量。当人体发生癌变或具有恶性潜能的癌前病变时,在其发生、发展过程中可伴随细胞DNA含量的异常改变,FCM可精确定量DNA含量的改变,作为诊断癌前病变发展至癌变中的一个有价值的标志,能对癌前病变的性质及发展趋势作出估价,有助于癌变的早期诊断。有资料证实,癌前病变的癌变发生率与细胞不典型增生程度有密切关系,增生程度越重,癌变发生率越高。随着细胞不典型增生程度的加重,DNA非整倍体出现率增高,这是癌变的一个重要标志。
(2)在肿瘤的诊断、预后判断和治疗中的作用:FCM在肿瘤诊断中的重要作用已经被认可,DNA非整倍体细胞峰的存在可为肿瘤诊断提供有力的依据,FCM分析病理细胞具有速度快、信息量大,敏感度高等优点,已被用在常规工作中。肿瘤细胞DNA倍体分析对病人预后的判断有重要作用,异倍体肿瘤恶变的复发率高、转移率高、亡率也高,而二倍体及近二倍体肿瘤的预后则较好。
FCM不仅可对恶性肿瘤DNA含量进行分析,还可根据化疗过程中肿瘤DNA分布直方图的变化去评估疗效,了解细胞动力学变化,对肿瘤化疗具有重要的意义。临床医师可以根据细胞周期各时相的分布情况,依据化疗药物对细胞动力学的干扰理论,设计最佳的治疗方案,从DNA直方图直接地看到瘤细胞的杀伤变化,及时选用有效的药物,对瘤细胞达到最大的杀伤效果。
此外FCM近几年还被应用于细胞凋亡和多药耐药基因的研究中[3,4]。医学工作者开始研究如何用药物诱导癌细胞亡。通过对细胞体积、光散射、DNA含量及特异性抗原基因(如bcl-2, Fas等)测定分析出细胞凋亡情况。多药耐药是肿瘤病人化疗失败的主要原因,FCM对多药耐药基因(P170等)和凋亡抑制基因及凋亡活化基因表达的测定,可为临床治疗效果分析提供有力依据。
在临床中的作用
FCM通过荧光抗原抗体检测技术对细胞表面抗原分析,进行细胞分类和亚群分析。这一技术对于人体细胞免疫功能的评估以及各种血液病及肿瘤的诊断和治疗有重要作用。有大量文章介绍了淋巴细胞亚群等在各种疾病中的变化。正常人群淋巴细胞T4/T8比值大约为2∶1,但在人体细胞免疫力低下时可出现比例倒置。用FCM还可以监测肾移植后病人的肾排斥反应,如果T4/T8比例倒置,病人预后良好,较少发生肾排异现象;反之排异危险性增加。同样此种测定技术也用于艾滋病的诊断和治疗中。还有作者报告了外周血淋巴细胞免疫表型的参考值,并对其种族、性别、年龄等影响因素进行了探讨[5]。
目前FCM用的各种单克隆抗体试剂已经发展到了百余种,可以对各种血细胞和组织细胞的表型进行测定分析。
在血液病诊断和治疗中的应用
FCM通过对外周血细胞或骨髓细胞表面抗原和DNA的检测分析,对各种血液病的诊断、预后判断和治疗起着举足轻重的作用。
(1)白血病的诊断和治疗:FCM采用各种抗血细胞表面分化抗原(CD)的单克隆抗体,借助于各种荧光染料(异硫氰基荧光素FITC,藻红蛋白PE等)测定一个细胞的多种参数,以正确地判断出该细胞的属性。各种血细胞系统都具有其独特的抗原,当形态学检查难以区别时,免疫表型参数对各种急性白血病的诊断和鉴别诊断有决定性作用[6]。例如干细胞表达CD34,髓系表达CD13、CD14,B细胞系表达CD10、CD19、CD20等,T细胞系表达CD2、CD3、CD5、CD7,利用FCM可以测定出血细胞表达各种抗原的水平,协助临床确诊。
同其它肿瘤的治疗一样,测定DNA倍体和进行细胞周期分析对指导白血病化疗有一定作用,不同的白血病患者或同一患者在不同病期白血病细胞增殖状况不同,定期了解细胞增殖情况采取相应药物可以提高疗效。
目前临床除化疗药物治疗外还采用造血干细胞移植技术治疗急性白血病和一些疑难性疾病[7]。FCM通过对人白细胞抗原(HLA)配型的测定可以为异体干细胞移植病人选择出最合适的供体。造血干细胞移植技术主要包括干细胞的鉴别、活性测定、干细胞动员和采集、分离纯化、保存扩增、肿瘤细胞的净化、干细胞回输以及术后保持移植物抗宿主病的低发生率等一系列过程。FCM测定CD34、HLA-DR、CD33等细胞表面标志物,成为干细胞移植技术重要的监测手段。用FCM检测一系列指标观察病人的恢复状态,可以对预后做出早期的判断。
(2)其它种类血液病的诊断和治疗监测:阵发性睡眠性血红蛋白尿症是一种造血干细胞克隆病,细胞CD55、CD59抗原表达减低是该病的一个特点。该抗原属于血细胞表面磷脂酰肌醇锚连蛋白家族,是重要的补体调节蛋白,它通过与补体C8、C9的结合以阻止补体膜攻击复合物的形成,从而抑制细胞被补体激活溶解。FCM采用荧光标记的单克隆抗体对血细胞CD59的表达做定量分析,可以协助临床做出诊断并判断疾病的严重程度[8]。
(3)网织红细胞的测定及临床应用:网织红细胞计数是反映骨髓造血功能的重要指标,FCM通过某些荧光染料(吖啶橙、噻唑橙等)与红细胞中RNA结合,定量测定网织红细胞中RNA,得到网织红细胞占成熟红细胞的百分比。有作者报道FCM方法比目测法结果精确度更高[9]。此外FCM还可以测量出网织红细胞的成熟度,对红细胞增殖能力的判断很有意义[10]。为干细胞移植术后恢复的判断、贫血的治疗监测、肿瘤病人放化疗对骨髓的抑制状况等提供了依据。
在血栓与出血性疾病中的应用
(1)血小板功能的测定:正常情况下血小板以分散状态在血管内运行,但当血管损伤、血流改变或受到化学物质刺激时血小板被活化而发生一系列改变。由于血小板的活化程度可由血小板膜糖蛋白表达水平的高低来判断,FCM测定血小板膜糖蛋白的表达情况成为检查血小板功能的一种新手段[11]。该方法灵敏、特异性高。如果采用全血法测定,只需微量标本,适合于儿童及血小板减少性疾病的患者[12]。 血小板活化时其质膜糖蛋白较其静止期发生显著改变,FCM可以通过单抗免疫荧光标记(血小板膜糖蛋白Ⅱb/Ⅲa,CD62,CD63等)监测血小板功能及活化情况,有利于血栓栓塞性疾病的诊断和治疗。
此外血小板活化时其细胞内的钙离子浓度发生很大变化,借助于钙离子敏感荧光探针的帮助,用FCM测定钙离子浓度,可以作为活化血小板监测的非免疫性指标。(2)血小板相关抗体的测定:免疫性血小板减少性紫癜病人血浆中可产生血小板自身抗体,结合在血小板表面,称为血小板相关抗体,其分子可以是IgG、IgA或IgM,用羊抗人IgG、IgA、IgM荧光抗体标记被测血小板,FCM可以测定血小板相关抗体含量。直接法检测血小板表面的相关抗体,间接法可测定血清中的相关抗体。该方法用于该病的诊断及治疗监测,具有检测速度快、灵敏度高的优点。
质量控制
一、流式细胞仪的校准
流式细胞仪的校准包括流路的稳定性、光路的稳定性、多色标记荧光颜色补偿、光电倍增管转换的线性和稳定性。对仪器的校准主要是利用标准微球进行监测。聚苯乙烯可以被做成各种大小的微球,也可被荧光标记或者拥有定量免疫球蛋白的结合位点。这种制成固定荧光强度、大小和光散射性的聚苯乙烯微球,已成为流式质控中的一个常用的标准品。
二、实验操作过程的质控
1、样本的质量控制
用于流式分析的样本种类很多,包括外周血、骨髓穿刺液、骨髓活检物、组织活检物、浆膜腔积液、脑脊液、皮肤、黏膜(内窥镜活检物)、细针穿刺物等等。样本的条件控制可能是免疫表型分析质控最困难的环节之一。每种样本都有不同的采集、保存、运输和制备要求。首先,观测样本外观:有严重溶血、凝聚或坏的样本应弃用。
第二,单细胞悬液的获取:外周血和骨髓穿刺液为天然单细胞悬液;活检组织常用机械分离和酶消化两种方法。不同的实验要求适用不同的方法。对于需要进行膜抗原标记的,不仅是要获得足够的单细胞悬液,还要尽量保证细胞结构的完整性和抗原性,机械法较适用。只需进行细胞周期或DNA倍体分析的,在机械法的基础上加酶消化(如胰蛋白酶、胃蛋白酶等)较适用。
第三,抗凝剂的选择:外周血标本可采用EDTA、ACD或肝素抗凝。如果用同一份血标本做白细胞计数和流式分析,则应用EDTA抗凝;对于血小板分析的实验,一般不用肝素抗凝。骨髓穿刺液常用肝素或EDTA抗凝。由于相对大量的ACD会通过改变pH而影响骨髓细胞活性问题,通常不推荐用ACD作骨髓穿刺液的抗凝剂。
第四,样本的保存:理想状态下,样本应在采集后立刻进行处理和染色。肝素抗凝的血和骨髓通常可保存至48-72小时/室温(16-25);EDTA抗凝的外周血和骨髓可保存12-24小时/室温(16-25);ACD抗凝的外周血可保存至72小时/室温(16-25);对于只作胞内染色的样本,可固定细胞以长期保存。但此“固定-染色”的方法取决于要分析的抗原特性和染色方式。
第五,去除红细胞的方法:红细胞裂解法,操作简单、快、并最可能保持原始标本的白细胞分布。最好在染色后溶血。若在染色前溶血,需确认:(1)抗原性不被溶血过程改变;(2)溶血剂被彻底洗去,细胞和抗体结合的动力反应未受影响;(3)所用溶血剂不含固定剂,否则会影响细胞活性及表面标记结果。密度梯度离心法,靶细胞回收较好并可能得到富集,同时去除红细胞、碎片等,但费时,某些重要细胞群体可能被选择性丢失。
第六,细胞与抗体的比例:厂家推荐的抗体用量通常是假定靶细胞数量在5X105 ~1x106范围内。有些标本没有足够的细胞,有些则由于细胞量大,正常浓度下的抗体相对过量或不足,导致假阳性或假阴性结果。因此,每个实验室应根据不同于厂家推荐的方法,调整细胞与抗体用量,得到最适的细胞/抗体比例。
第七,细胞活性的鉴定:细胞对许多抗体均有很强的非特异性染色,这就使样本细胞活性检测变得非常重要,尤其是经过了长时间运输和储存的样本。检测的方法通常有两种:(1)实时的流式检测:利用荧光染料碘化吡啶(PI)、7氨基放线菌素D(7-AAD)或EMA(ethidium monoacide)进行细胞染色,而活细胞拒染这些染料。此方法的优势是细胞表面标志和活性分析可同时进行。尤其适用于高度坏的样本。7-AAD最常用,因为在488nm激发下,其最大发射光在670nm左右,适合与FITC 或PE进行多色标记。但随着时间延长,7AAD会在固定的细胞群体重新分配,活细胞的区分变得困难。因此,对于染色并在固定后12小时以上分析的标本,最好用EMA。EMA与细胞DNA稳定的共价结合保证了长时间固定后仍能很好地区分固定前的活状态。(2)手工检测:使用Trypan blue 或其他细胞活性染料。(3)使用专门的仪器进行检测。如Vi-cell.
2、选择和确定单抗组合
流式分析最基本的试剂就是抗体。所选抗体的好坏直接影响结果。影响抗体特性的因素很多,如F/P比值、亚型、全长或片段、种宿来源、标记荧光种类等等。而且,有CD分类号的300多种单抗和大量没有CD分类号的单抗使抗体的选择更加困难。一般,选择抗体组合遵循以下基本原则:1)所选的抗体组合应足够宽,可以鉴别样本中的所有细胞亚群包括正常和异常群体。2)对表达少的抗原应尽可能选择荧光强度强的荧光素标记。3)了解不同抗体的细胞反应谱,以及染色模式。根据不同的实验目的选择抗体。因为相同CD编号的抗体可能识别不同的抗原决定簇。4)抗体的多种组合可能相互影响与抗原的结合(如通过空间构型的阻碍),所以对所用抗体组合,应先了解每个抗体在对照细胞上单色标记的表达情况。5)对于临床实验尽量选择体外诊断(IVD)试剂和分析特异性(ASR)试剂,而仅供研究用(RUO)试剂一般不能用于体外诊断实验。在我国,用于体外诊断的试剂还必须取得国内的SDA认证。这样,一个抗体组合内的抗体可能来源不同的公司,有不同的浓度、不同的亚型、不同F/P值,可能均需要自身的同型对照,而实际上,这是非常困难的。那么,尽量选择同一家公司的试剂可以减少上述的干扰。对于临床上常见的流式检测项目,所需的试剂组合基本都有参考或推荐的抗体组合。
如,T细胞亚群检测的CD45/CD4/CD8/CD3、CD45/CD56/CD19/CD3;阵发性血红蛋白尿(PNH)检测的CD55、CD59;血小板无力症(GT)检测的CD41、CD61等等。但对于白血病/淋巴瘤免疫分型,国际上迄今为止也没有统一的抗体组合。在2000年国际细胞分析学会(ISAC)大会上,临床血细胞计数协会组织了一次国际专家会议,以期对检测血液淋巴系统肿瘤所需最少、最有效的单抗数达成共识。75%与会者一致认为,对于慢性淋巴系统增殖性疾病(CLD)有9种单抗:CD5,CD19, κ,λ,CD3,CD20,CD23,CD10,CD45对初诊来说是最基本的。淋巴瘤和CLD相似,需要至少12-16种单抗。对于急性白血病(AL),75%的与会者认为大约13-15种单抗是最基本的:CD10,CD19,CD79a,CD13,CD33,CD34,CD45,CD2,MPO,CD7,CD14,CD3,HLA-DR等,对初步鉴别白血病系列是必需的。其他一些(CD16,CD56,CDw65,TdT,cyCD3)可能对某些病例有用。几乎所有的投票者都认为,要对急性白血病完善分类所需单抗的恰当数量平均为20-24种。但这些抗体之间组合也是一大难题,目前也无统一规定(如表二)。大会多数发言者(11/13)指出,对已确诊病人的监护和分期来说,仅需较少单抗。
抗体的质量控制是实验的关键环节。抗体的质量包括其特异性、灵敏度、精密度。对这一些,一些商业化的公司对常用单抗的检验均推出了一系列质控物。如BECKMAN COULTER公司的Cyto-Trol、Immuno-Trol等(见表一)。
3、染色方法
细胞表面染色:大多数免疫表型分析均采用此方法。但由于许多抗原也同时存在细胞内,所以在细胞表面抗原检测时应特别注意保持细胞膜的完整以保证检测的特异性。表面标记又分溶血前标记和溶血后标记。若红细胞对标记有影响或血浆成分对标记有影响的,适合溶血后标记,但要注意溶血剂膜抗原的影响,所以,溶血剂一般不含固定剂。如免疫球蛋白轻链检测和阵发性血红蛋白尿的检测等。
细胞内染色:有些胞内抗原的检测对白血病的免疫分型尤为重要,如TdT, MPO, cCD3, cCD79a 。胞内染色的关键是使细胞膜通透,把抗体或核酸染料导入胞内而不影响细胞骨架的完整性。还要保证固定和透膜的步骤不影响有关抗原与相应抗体的结合力和核酸与染料的结合。某些适用于胞内染色的试剂可能不适于表面标记分析。通常胞内染色不能与细胞活性的检测同时进行,除非用EMA的方法。对于胞内染色,所用的荧光素应足够小到能穿透到胞膜内。对于某些核酸染料(如DAPI、TO、AO等)为活细胞染料,无需固定或透膜。
胞膜和胞内染色:通常,先胞膜染色,固定,膜通透和胞内染色,最后是DNA染色。
三、数据的获取和分析
流式细胞仪数据的获取必须是在仪器性能的校准均合格的基础上进行。由于流式细胞仪是基于对散射光信号和荧光信号进行分析的仪器,因此,仪器散射光和荧光信号的光电倍增管电压、增益、颜色补偿等参数的设定直接影响结果。同型对照的设定尤为重要。同型对照是指与单抗种宿来源相同、亚型相同、标记荧光素相同的未免疫动物的免疫球蛋白。同时考虑浓度、F/P值尽量相同,这样阳性阈值的界定才比较准确,特别是对于弱表达抗原阳性率的测定。而DNA倍体分析中参照物的设定非常重要,一般鸡红细胞作为内参照物。为了结果的可靠性,对获取的细胞量至少应在10000-20000个。但不同的实验目的对于获取的细胞量要求一般是不一样的,如DNA倍体分析,至少应获取10000个细胞;微小残留病灶(MRD)的检测,要求达到10-4数量级水平,则应至少分析100000个细胞干细胞移植中CD34的检测,应至少获取100个CD34阳性细胞或75000个有核细胞。
对于获取的数据,应保存在listmode文件中,便于分析。设门(gating)对于流式数据分析至关重要。设门实际就是确定分析区域。在DNA倍体分析中,设门实际就是圈定单个细胞,排除粘连细胞。对于细胞成分单一的标本(如培养细胞),设门比较简单。但对于成分复杂的标本(如骨髓)而言,准确的设门就不那么简单。前向散射光(FS)与侧向散射光(SS)设门干扰因素较多,目前,越来越多的被免疫标记物加散射光设门所取代。如,CD45/SS设门已成为白血病/淋巴瘤免疫分型、CD34检测、MRD监测最佳的设门方法;CD19/SS设门对于成熟B淋系增生性疾病分析非常适用。
在数据分析中,百分率、荧光强度、DNA指数(DI)、多少个/ul是我们报告中常用的。百分率主要适用于检验指标集中在细胞有无的数量变化。如T细胞亚群检测、网织红细胞检测等;荧光强度主要适用于检验指标的变化集中在细胞上抗原量的多少。如血小板无力症(GT)的检测、慢性淋巴细胞白血病(CLL)CD20的变化等。DI用于DNA倍体分析。而艾滋病划分中外周血CD4的绝对定量、OKT3治疗监测中CD3的绝对定量、干细胞移植中的CD34的定量等等,最终都以多少个/ul的浓度形式表示出来。对于白血病/淋巴瘤免疫分型结果的分析,以前基本上都是以百分率的形式报告临床,但单纯的百分率结果并不能完整的反映肿瘤细胞的特性。因为20%人为认定的阳性判断标准忽略了低于20%的弱阳性结果,以及忽略了阳性结果之间荧光强弱的差别,而这一切对于白血病/淋巴瘤的诊断和分型却非常重要。目前,大多主张以文字描述抗原有无和强弱的报告方式,废弃百分率的报告形式。
四、临床检验的分析过程的质量评价
质量控制也必须重视检验方法学的选择和评价。任何一次实验都一定有误差,在一定意义上可以将误差分为实验方法学的系统误差及除此之外的随机误差。质量控制的方法和手段都只能减少或消除随机误差,但不影响系统误差。要使检验结果的误差控制在临床可接受的低水平或者允许的误差范围内,必须使用总误差水平符合临床要求的检验方法(包括仪器、试剂、具体操作方法等),才能保证检验结果在质量控制下符合临床要求。临床检验质量控制的目的,是监测实验过程中出现重要的误差时,用适当的方法警告分析人员。一般说来,检查实验结果质量的方法是测定质控物,最通用做法是将质控品和病人一起进行常规检验,了解检验质量则是将质控品测定的结果画在控制图上,观测控制结果是否超过控制限来决定失控与否。
在开始使用质控物的第一个月内,检验人员每天将质控物随机插入病人标本中进行检验项目的测定。月末对当月的测定结果(n≥20)做简单统计,求出均值x和标准差s。若检验结果的分布接近正态分布,结果的分布即可用均值和标准差来描述。这就意味着95.5%的结果在x+2s范围内,99.7%的结果在x+3s范围内。为便于观察质控结果,及时了解有何失效情况,常使用质控图。
按照正态分布规律:1)所有测定值应均匀分布于均值两侧,不应有明显不均之感;2)质控品测定值应有95.5%的可能性在x±2s范围之内; 3)不应有连续6次以上的结果落于平均值的一侧;4)不能有连续5次以上的结果有逐渐增高或降低的趋势性变化;5)不应有连续两次结果在x±2s范围之外; 6)没有一次结果在x±3s范围之外。
如果不符合上述规律,则说明结果失控。只有证实当天质控结果在控制之内,对当天的临床检验才能发出结果。一旦出现失控,则须查明原因,重新检验。对有1次检验结果超出均数2个标准差范围,提示警告。同批实验中2个质控品的结果之差值超过4s,也是失控规则之一,提示存在随机误差。连续4次质控结果同方向超出均数1个标准差范围,也是失控规则之一,提示存在系统误差。
五、室间质量评价
开展内部的质量控制使实验的受控项目达到一定的精密度。临床上往往只对实验结果是否可重复较敏感,若实验结果存在较稳定的系统误差,临床和实验室一般不易察觉,因此内部的质量控制还在于控制结果的不精密度。由专门机构定期向临床实验室分发质控品,要求各单位检测后返回测定结果,经过整理和统计,以数据和报告形式反映各实验室间及各分析方法间的差异,根据各单位测定结果与靶值的离散程度,计算出该实验室所的分数,及时反馈给参加者,便于改进工作。这就是室间质量评价的基本形式。室间质量评价主要是控制实验室工作的不准确度,是对室内质量控制的补充。我国于2000年,由卫生部临床检验中心开始组织开展临床流式细胞术室间质评。现已开展了T细胞亚群检测和CD34绝对计数的室间质评。
生物问题
核型研究所用的材料或是自然条件下活体中正在旺盛分裂的细胞(如植物的根尖、嫩叶、茎尖等细胞,以及动物的胚胎细胞、骨髓细胞、睾丸中的精原细胞等)或是离体培养的旺盛分裂的细胞。植物细胞一般不经低渗处理,如需经低渗处理则需用酶溶去细胞壁。动物细胞则往往经低渗处理后再行固定、染色。
常用的显带技术所显示的带有Q带、G带、C带、R带、T带等。Q带技术即喹吖因荧光染色技术,是1968年瑞典细胞化学家T.O.卡斯珀松建立的,所显示的是中期染色体经氮芥喹吖因或双盐酸喹吖因染色后在紫外线照射下所呈现的明亮的荧光带,这些区带相当于DNA分子中A:T碱基对成分丰富的部分。G带即吉姆萨带,是将处于分裂中期的细胞经过胰酶或碱、热、尿素、去污剂等处理后再经吉姆萨染料染色后所呈现的区带。C 带又称着丝粒异染色质带,是着丝粒邻近的异染色质部分。C带技术是M.L.帕多等于1970年建立的。R带由 B.迪特里约于1971年所首创,是中期染色体不经盐酸水解或胰酶处理,只在磷酸缓冲液中保温处理后就用吉姆萨等染料染色后所呈现的区带,也是G带染色后的带间不着色区,所以又称反带。T带又称端粒带,是染色体的端粒部位经吖啶橙染色后所呈现的区带,典型的T带呈绿色,由B.迪特里约1973年首先报道。染色体银染法系用硝酸银 (AgNO3)使染色体上的核仁形成区部位呈现黑色的一种特殊染色法。1975年以来,美国细胞遗传学家J.J.尤尼斯等又建立了高分辨显带法,方法是先用氨甲喋呤使细胞分裂同步化,然后用秋水酰胺进行短时间的处理,使出现大量晚前期和早中期的分裂相。在这样处理过的人的早中期细胞的染色体组中可以看到555~842条带。在晚前期细胞中可以看到843~1256条带,而已往在中期染色体上只能观察到320~554条带。后来又用放线菌素D作用于DNA合成后期(G2期)的细胞以阻碍染色体浓缩时特殊蛋白质与染色体的结合,从而使染色体更为细长,使所显示的带纹多达5000条。这样就可以更精确地观察染色体的各种变异,甚至在各种生物的正常个体细胞中也可以看到染色体的各种区带的宽窄、位置等存在着一些变化,这些变化称带的多态现象。
核型分析包括哪些内容
细胞周期
1 细胞周期的概念
活细胞生长到一定阶段,不是繁殖,就是亡,几乎没有例外。细胞分裂后所产生的新细胞生长增大,随后又平均地分裂成两个和原来母细胞相同的子细胞。现在把细胞的这种生长与分裂的周期叫做细胞周期更具体地说细胞周期是指细胞一次分裂结束开始生长,到下一次分裂终了所经历的过程。所需的时间叫细胞周期时间。
依照1953年霍华德等(Howard和Pelc)首先确定的细胞周期时间表的4个期是:(1)从有丝分裂完成到DNA复制之前的这段间隙时间称为G1期;(2)DNA复制的时期叫S期。DNA在S期含量增加一倍,只有在这个时期氚标记的胸苷可以掺入DNA,提供了与其他各期的一个界标;(3)从DNA复制完成到有丝分裂开始,这段间隙时间叫G2期;(4)从细胞分裂开始到结束,也就是从染色体的凝缩、分离到平均分配到2个子细胞为止,分裂后细胞内DNA减半。这个时期称为M期或D期(图14-1)。细胞分裂期的开始,标志着G2期的结束。
在分裂完成后,一般只有一部分子细胞再进入G1期,开始第二个周期,其他细胞不再进入周期而进行分化。在晚G1期有个决定点(D),决定细胞是否再开始代谢活动的顺序,引导细胞进行有丝分裂,或离开周期,停止循着周期前进入一个休止期。但在哺乳类细胞有所不同,可根据它们合成DNA和分裂的能力分为三类:第一类保持继续分裂能力,再进入细胞周期,由这次有丝分裂再到下一次分裂;第二类细胞群则永久失掉了分裂的能力;第三类是静止的细胞群。在平常的情况它们是不能合成DNA或进行分裂的。但在给予适当的刺激后,可以重新进入周期开始分裂,这类细胞叫G0细胞(不包括在周期之内)(图14-2)。G0和G1细胞无论在形态上和功能上的基础都是不同的。例如两者都能合成RNA和蛋白质,但G0细胞增强了对放线菌素D和吖啶橙的结合。
2 细胞周期的过程
从表14-3细胞周期的生物化学活动中可以看出,蛋白质、RNA和DNA都在间期中合成,然后再进入分裂期。G1期主要是生长,最重要的是控制着细胞繁殖的速度。正在繁殖的细胞可很快通过G1期,而在多细胞生物体的细胞,有些可暂时或永久停留在这一时期停止繁殖。
S期是DNA的复制期。DNA复制所需的酶,都在这时期合成。在真核细胞染色体的DNA分子上有许多复制单位,例如在人体46个染色体上共有约7万个复制单位,每个染色体平均约有1300个。这些复制单位不是在S期开始时都同时进行复制,而是有的在早期,有的在晚期,先后交错进行的,并在S期全部复制完毕。如果某一复制单位在前一S期的早期复制,那么到下一个S期也在早期复制。已发现常染色质和异染色质中DNA的复制也有先后次序,常染色质中的在S期的早期,而异染色质中的在晚期。那些能转录的DNA在早S期,不能转录的在晚S期。至于如何控制这么多的复制单位进行复制的机理,目前尚不了解。
G2期是作为进入细胞有丝分裂的准备期。这一时期需要有新的RNA和蛋白质的合成,如果抑制了它们的合成,就会阻止进入G2期。在G2期有几种蛋白质出现,而在有丝分裂结束时就不见。其中有一些蛋白质叫成熟促进因子(MPF),仅在G2期合成。它们能使间期核被膜破裂染色质凝集成有丝分裂的染色体形式。这种MPF首先是在成熟的爪蟾卵母细胞中被鉴定的,其后在哺乳类的卵母细胞减数分裂和体细胞的有丝分裂,以及酵母菌有丝分裂时被鉴定出来。如果把哺乳类有丝分裂细胞中提取出来的半纯品MPF,注射入未成熟的爪蟾卵母细胞中,也能使核被膜破裂和早熟染色体凝集。
早熟染色体凝集现象,早在1970年Johnson和Rao 在灭活的仙台病毒介导下获得的融合细胞中发现。在一个有丝分裂细胞和间期细胞之间的融合,导致间期核被膜的崩溃,染色质凝集成分离的染色体。早熟凝集染色体的形态决定于融合时细胞在间期的位置。G1期早熟凝集染色体是由单个染色单体组成;S期早熟凝集染色体是“碎片状”,可能是由于DNA复制是在DNA长度的许多复制单位上进行的结果;G2期早熟凝集染色体由两条染色单体组成(图14-3)。近年来,他们(Sunkara等,1979)又发现引起染色体凝集的,在有丝分裂、减数分裂和爪蟾的卵母细胞的胚泡(未成熟的卵核)崩溃时经常出现的一些因子是一些蛋白质,称之为有丝分裂因子。它们在G2期合成,有丝分裂期达到高峰,在G1期开始迅速下降。
在这些研究的基础上,其后又在爪蟾卵母细胞的G2期鉴定出一些蛋白质,即成熟促进因子(MPF),也能引起染色体作有丝分裂的凝集。如果这种MPF继续存在,则分裂的细胞将仍然停留在中期。怎样才能完成有丝分裂?现在已从爪蟾卵母细胞中鉴定出一种使MPF无活性的抑制物,它出现在中期能使MPF失去活性,由于它能在中期释放出来,就能使有丝分裂或减数分裂完成,再次进入又一次的间期。由此可见,这种抑制物在染色体凝集中起重要的调节作用。
通过从爪蟾卵母细胞中提取出来的MPF对分离出来的间期核进行培养的实验发现,在MPF加入15分钟后,核纤层的两种蛋白质lamin sA和C变成高磷酸化,随后核纤层就破裂,这可能是由于核纤层蛋白高磷酸化的结果。在30分钟后,核被膜就融解了。当分裂末期lamins发生去磷酸化,核被膜又出现重组。由此可见,蛋白质的磷酸化与去磷酸比和染色质的凝集,核纤层的破裂,核被膜的崩溃和重组都有密切的关系。
3 细胞周期的速率
细胞周期中前面的G1、S和G2期是生长期,后面一个M期是分裂期,这4个期的延续时间长短随细胞种类而异,但在同类细胞中的差别,虽受环境条件的影响,其间的差别仍较小(表14-1)。
各个时期延续的时间虽有差别,但仍表现有相似之处,如S期长而M期短。其中最引人注意的是G1期,有的很短如卵细胞,G1期完全测不出来;有的很长如白血病细胞可延续到十天以上。即使同一系统的细胞,由于它们所处的部位不同,细胞周期长短也不同,如消化系统,小鼠食道和十二指肠上皮细胞,它们的细胞周期总时间分别为115小时和15小时,食道的G1期长达103小时,而十二指肠的为6小时,两者周期速率之差主要在G1期。
4 细胞周期的生物化学
要了解细胞周期中各个时期的合成,以及各种生物化学变化情况,最好的办法是使在培养中的细胞都能同步化生长,否则就不可能得到很正确的结果。现在已经知道,有许多药剂加到培养液中,或者培养液缺少某种化合物,都能使不同步生长的细胞进行同步化生长,就能获得细胞时相均一的群体,以便进行生化分析以及用于细胞生物学方面的其他研究,如用秋水仙素使M期细胞停止在中期,就可用来进行染色体色带的分析。现将这些药物以及它们对细胞周期抑制的时相总结在表14-2。
细胞同步化的方法很多,现将常用的几种简要地介绍如下:
1.细胞分裂收获法 进行动物细胞单层培养时,在细胞不分裂的时候,都贴附在瓶壁表面。当有丝分裂开始,细胞就“站立”起来(成圆球形)。这时如把瓶轻轻摇动,正在分裂的细胞就被摇下来。这样,每隔一小时摇一次并收获一次,放入2—4℃冰箱内保存,可连续收集24小时。待收集完毕,再放入加有适量秋水仙素的培养液中,在37℃温箱中培养,处于M期的细胞,马上就可以开始生长,并都停留在中期。
2.代谢抑制法 本法常用的药物为加过量的胸苷到培养液中。胸苷是合成DNA的前体,是不可缺少的。适当的量为10-5-10-7mol/L,如给以过量的胸苷(即10-3mol/L),则将引起脱氧胸苷的合成受到抑制,结果DNA的合成也将受到阻止。在培养中的细胞,当给以过量的胸苷后,经过24小时,然后冲洗,则S期的细胞都向G1、M和G1期前进。随后再加一次过量的胸苷继续培养,则细胞大都被阻滞在G1/S期。经过清洗就可把多余的胸苷洗掉而得到同步化的细胞。如这时还不能充分同步时,可再加一次过量的胸苷处理。
3.低温培养法 本法是先将宫颈癌细胞在37℃中培养24小时,然后在4℃培养1小时,并很快回到37℃中继续培养。在其后17小时内几乎没有看到分裂,但再经 1小时,约有95%的细胞同时进行分裂,细胞的数目增加一倍。如果保持这种同步分裂,可将分裂后的细胞,再经过一次低温处理。
通过上述这些同步化的方法,就可使培养中的细胞群体被阻滞在细胞周期的某一时相上,用来进行各种生化分析,从而了解各个不同时期细胞内的生化变化状况。现将细胞周期中各个时期的生物化学活动总结在表14-3中。
G0期细胞是能育的,在适宜的条件或刺激下,有能力再进入细胞周期。如大部分肝细胞是处于正常的G0状态,若将肝切除一部分,留下的细胞能再进入周期,再生细胞来代替切除的肝组织。又如唾液腺细胞也是在G0期,如果用异丙基肾上腺素(IPR)处理,就能刺激G0细胞增殖。这种苏醒状态的G0细胞,将经过一系列的代谢的变化才进入DNA合成期。这些生化活动见图14-4。
5 细胞增殖的调控
多细胞生物体要维持正常的生活,保持体重的恒定,就必须不断增殖新细胞来代替那些衰老亡的细胞。例如人体每天要消失的细胞估计约占总数的1—2%,因此,每天新生的细胞要以亿万计。在体内的各种不同组织中,细胞转换的速度不同。例如神经元细胞新生的很少,而另一类细胞则增殖很快,如小肠粘膜和表皮,还有一些器官的生长状况则介于两者之间。如肝细胞经常在转换,但速度较慢,一个肝细胞的平均寿命约18个月,而小肠粘膜细胞只能存活二天。有关细胞的增殖、分化、迁移和亡等问题相当复杂,新兴起来的细胞群体动力学就是研究这方面的问题。
关于如何调控细胞的增殖,这里先介绍在培养条件下大家经常提到的接触抑制。当正常的成纤维细胞在组织培养中,形成单层细胞相互接触后,生长与运动就被抑制。被抑制的细胞停留在G1期。在这里它们仍能保持许多天没有不利的影响。当这些细胞从培养管中移植到新的培养管中,它们能继续生长,通过细胞周期,为什么会出现这种现象?其机理还不得了解。有人(Burger等,1970)指出,这种调节的形成是由细胞膜的结构决定的。他们的实验是将正常的成纤维细胞经胰蛋白酶和其他蛋白酶处理后,在离体培养时,这些细胞又有增殖能力。这是因为细胞经胰蛋白酶处理后,质膜的外被被消化掉,凝集部位曝露,就不再出现接触抑制。但如果这些经过处理的细胞,把胰蛋白酶洗掉后再进行培养,则又能再生正常的质膜(即有完好的外被),接触抑制又恢复。这个实验说明接触抑制与细胞膜的结构有紧密的关系(图14-5)。
在生物体内细胞繁殖的调控更为复杂。在动植物细胞中,细胞繁殖的速率不同,已如上述。同一体内不同组织的细胞繁殖速度也不同,有的受激素调控,有的能自我调节。例如:骨髓细胞分化为红细胞的繁殖速度,是由激素红细胞生成素的刺激来决定的。它们是被血液中O2的水平高低来决定在肾细胞中合成的速度。当O2的水平下降,在肾中红细胞生成素的产量增加,它将导致骨髓中红细胞产生速度增长。红细胞的增加将提高血液中携带O2的能力。随着O2水平上升,红细胞生成素就下降。这一调控机理不仅能保持红细胞生产的速率去代替那些消失和亡的红细胞,而且还能提高红细胞的产量,以适应出血后失去的血液和适应在海拔高大气O2降低的影响。
在植物细胞培养中,激素对细胞繁殖的调控也很明显。例如在禾谷类作物细胞的培养中,培养基中加入适量的2,4-D生长素,就能使细胞分裂成细胞团,然后除去此激素能顺利生长成体细胞胚。
细胞繁殖的自我调节最明显的例子是成年哺乳动物肝细胞的繁殖。在平时肝细胞处于G1期。肝细胞寿命长,繁殖速度也较低。但一旦把肝脏大部切除,那么留下部分的细胞就会通过G1期进行有丝分裂。如果将大鼠的肝切去四分之三,残存的部分能很快繁殖再生,几天之内就恢复原有的大小。
现在知道细胞的分裂与分化,也受细胞膜上两类受体的调节。
许多证据说明对通过激活细胞膜上两类受体所导致细胞内的介体cAMP与GMP的变化,及其所引起细胞功能的变化,也可用阴阳学说(Goldberg,1973)来解释。
6 细胞周期的基因
细胞周期的各个时期都需要有各种不同功能的蛋白质,编码这些蛋白质的基因叫细胞周期基因,或称细胞分裂周期基因。例如DNA复制时应有各种酶的合成,引起染色体的凝集需要有成熟促进因子(MPF)的出现。研究细胞周期基因最多的是酵母菌。已知约有50种不同的cdc基因被条件突变鉴别出来。所谓条件突变是指只有在某一培养条件下影响基因产物活性的突变。几乎所有条件突变是对温度敏感(Ts突变)。例如酵母菌中已发现的几种温度敏感突变,正常生活温度为35℃,如培养在37℃,就会阻止某种蛋白质的合成,这叫做热敏感突变。在23℃培养时,则发生另一种突变,这叫做冷敏感突变。通常这种Ts突变是由于其中一个氨基酸被替代的结果。改变了基因产物蛋白质三维结构型的稳定性。高于或低于某一温度时就会失去它的功能。从这些突变体的研究中,发现某些特异蛋白质的功能与细胞周期有密切关系,酵母菌中的许多蛋白质在细胞周期的各个事件中,都担负着各自的功能。
7 细胞动力学的发展
什么是细胞动力学?细胞动力学是从定量方面来研究机体的细胞群体、增殖分化、分布消亡的规律,以及它们对于生理和理化因子而发生的调节和反应的学科。细胞动力学的研究不仅对肿瘤疾病的诊断、治疗和发病原理研究等有密切的关系,而且对于机体组织的增生与修复,特别是对于造血系统疾病(如恶性贫血)、皮肤(如牛皮癣),以及放射病、计划生育、免疫淋巴细胞的生成与调节等重大课题都有极为密切的关系。对于这门新兴的学科,特别是对干细胞(stem cell.存在于体细胞与生殖细胞,是一种最基本的多潜能的母细胞,它的子代能向不同的方向转化。从造血干细胞可以分化出任何一种造血细胞。受致剂量照射的动物,通过输注骨髓细胞,可使所有的淋巴器官得到重建,就是因为骨髓细胞中存在着干细胞)的研究是涉及癌变发生及逆转,根治肿瘤的根本途径,因而必须加以认真地对待。由此可见,细胞周期概念的出现,以及细胞动力学作为一门学科来发展,不仅对细胞生物学有重要影响,而且对人体肿瘤的治疗,也有重要的指导作用。正常及肿瘤细胞群体增殖动力学及细胞周期研究得出的一些基本原理,对制订合理治疗方案,可提供坚实的理论基础。
白血病的化疗原理之一,便是利用肿瘤细胞和正常骨髓细胞的周期时间的差异(表14-1),来最大限度地杀伤肿瘤细胞,保存骨髓细胞。正常骨髓细胞的细胞周期时间短,恢复快,而白血病细胞周期长,第一次给药后,待骨髓恢复正常而白血病细胞数量尚未恢复前,又第二次给药进行一次杀伤,利用联合化疗,重复给药。在理论上是可以消灭白血病细胞而达到“痊愈”,在实际上也取得了较大的进展,但是,我们必须认识到,细胞动力学的发展,仍然处于幼年阶段,细胞动力学知识,应用于临床,也只是刚刚开始。为此,今后必须对人的正常组织和癌在体内细胞周期的研究进一步深入,使细胞增殖动力学和肿瘤治疗的关系更加紧密。
细胞分裂需要消耗大量的能量和物质。
2018年医疗器械体外诊断产品分类界定结果汇总
白衬衫,张扬
动物、植物、真菌等真核生物的某一个体或某一分类群(亚种、种、属等)的细胞内具有的相对恒定特征的单倍或双倍染色体组(见彩图)。染色体的特征以有丝分裂中期最为显著,包括染色体的数目、长度、着丝粒的位置、随体(指某些染色体末端的球形小体,由着色浅而狭细的副缢痕与染色体臂相连)与副缢痕的数目、大小、位置以及异染色质和常染色质在染色体上的分布等。
核型核型核型
将一个染色体组的全部染色体逐条按其特征画下来,再按长短、形态等特征排列起来的图称为核型模式图,它代表一个物种的核型模式。
由于许多物种的各个染色体靠普通的制片染色方法不易精确地识别和区分,1968年以来发展起来的显带技术,即用各种特殊的处理和染色方法使各条染色体显示出各自的横纹特征(带型)的方法成为研究核型的有力工具。
核型及其各种带型是动物、植物、真菌在染色体水平上的表型。研究和比较各种动物、植物、真菌的核型和带型有助于对各个种、属、科的亲缘关系作出判断,揭示核型的进化过程和机制。此外,核型的研究又和人类自身利害密切相关,它的数目和结构的改变往往给人类带来遗传性疾病──染色体病;
肿瘤细胞
的核型分析已被应用于肿瘤的临床诊断、预后及药物疗效的观察;通过培养后的淋巴细胞或皮肤成纤维细胞
的核型分析,可以对人的染色体病进行诊断,而对培养后的羊水中的胎儿脱屑细胞或胎盘
绒毛膜
细胞的核型分析则可用于对胎儿的性别和染色体病的产前诊断。
核型一词首先由苏联学者T.A.列维茨基和JI.杰洛涅等在20世纪20年代提出。1952年美国细胞学家徐道觉首先采用低渗处理技术使细胞内的染色体分散而便于观察,以后秋水仙素
的应用使增殖中的细胞停止于中期,从而便于获得大量供观察的中期分裂相,植物凝血素(简称 PHA)刺激白细胞分裂的发现使以血培养方法观察动物与人的染色体成为可能。随着各种培养、制片、染色技术
的改进使核型的研究进入了蓬勃发展的新阶段。1956年瑞典细胞遗传学家庄有兴等报告了人的染色体数是46而不是过去认为的48。1959年以后在人类中发现越来越多的各种各样的染色体异常
。1960年 4月在美国丹佛市召开的国际学术会议上对人的染色体分群和命名的术语、符号、方法等作了统一规定,在第五次国际人类遗传学会议上产生的人类染色体命名
常务委员会又于1977年专门召开了会议进行修订,会后公布了《人类细胞遗传学命名国际体制(ISCN)(1978)》。1981年该委员会又公布了《人类细胞遗传学高分辨显带命名国际体制》,在1977年所制订的中期染色体带型命名规定的基础上提出了高分辨的晚前期和早中期染色体带型命名规定和模式图。这些规定目前为世界各国学者所普遍采用。
方法 核型研究所用的材料或是自然条件下活体中正在旺盛分裂的细胞(如植物的根尖、嫩叶、茎尖等细胞,以及动物的胚胎细胞、骨髓细胞、睾丸中的精原细胞等)或是离体培养的旺盛分裂的细胞。
植物细胞
一般不经低渗处理,如需经低渗处理则需用酶溶去细胞壁。
动物细胞
则往往经低渗处理后再行固定、染色。
常用的显带技术所显示的带有Q带、G带、C带、R带、T带等。Q带技术即喹吖因荧光染色技术,是1968年瑞典细胞化学家T.O.卡斯珀松建立的,所显示的是中期染色体经氮芥喹吖因或双盐酸喹吖因染色后在
紫外线照射下所呈现的明亮的荧光带,这些区带相当于DNA分子中A:T碱基对成分丰富的部分。G带即吉姆萨带,是将处于分裂中期的细胞经过胰酶或碱、热、尿素、去污剂等处理后再经吉姆萨染料染色后所呈现的区带。C 带又称着丝粒异染色质带,是着丝粒邻近的异染色质部分。C带技术是M.L.帕多等于1970年建立的。R带由 B.迪特里约于1971年所首创,是中期染色体不经盐酸水解或胰酶处理,只在磷酸缓冲液中保温处理后就用吉姆萨等染料染色后所呈现的区带,也是G带染色后的带间不着色区,所以又称反带。T带又称端粒带,是染色体的端粒部位经吖啶橙染色后所呈现的区带,典型的T带呈绿色,由B.迪特里约1973年首先报道。
近日,中检院发布《2018年医疗器械产品分类界定结果汇总》,其中涉及573个产品共分七大类:
一、按照III类医疗器械管理的产品(69个);
二、按照II类医疗器械管理的产品(122个);
三、按照I类医疗器械管理的产品(219个);
四、不单独作为医疗器械管理的产品(19个);
五、按药械组合管理的产品(22个);
六、不作为医疗器械管理的产品(110个);
七、视具体情况而定的产品(12个)。
说明:
1.产品分类界定结果是基于申请人提供的资料得出,不代表对其产品安全性和有效性的认可,仅作为医疗器械产品注册和备案的参考;结果中产品描述和预期用途是用于判定产品的管理属性和类别,不代表相关产品注册或备案内容的完整表述。
2.?《医疗器械分类目录》中暂无对应一级产品类别的“分类编码”以“00”表示,如“等离子体治疗仪”的分类编码:09-00。
涉及到体外诊断产品如下:
一、按照III类医疗器械管理的产品(34个)
1.即时真空自动采血仪: 由移动换管单元、刺塞混匀单元、送针单元、抽真空单元、采血管排架、光学定量检测单元、电子控制单元和溢血检测单元组成。通过机器内负压泵产生的负压对人体进行采血,依靠光学检测系统对采血量进行定量检测,采血后立即旋转采血管将血液与管内添加剂混合均匀,最终得到符合要求的血液样本。临床上用于医院门诊和采血中心采集患者静脉血使用。分类编码:22-11。
2.基因测序用文库试剂盒: 由文库扩增反应液、缓冲液、DNA连接酶和序列接头组成。用于处理从外周全血或石蜡包埋组织中提取的人类基因组DNA以及由此产生的样本库的目标序列。与Illumina二代测序仪及测序反应通用试剂盒配合使用。不用于人全基因组测序或从头测序。分类编码:6840。
3.泛素羧基末端水解酶-1(UCH-L1)测定试剂盒(磁微粒化学发光法): 由泛素羧基末端水解酶-1(UCH-L1)检测试剂条、质控品、校准品、干燥剂组成。用于人血清样本中UCH-L1含量的测定,临床上可用于监测神经退行性疾病肿瘤发生发展过程、脑外伤的辅助诊断等。分类编码:6840。
4.阴道滴虫(T.V)分泌蛋白检测试剂盒(胶体金法): 由阴道滴虫(T.V)分泌蛋白检测试纸条/试纸卡和样品缓冲液组成。用于定性检测女性阴道分泌物、尿液样本中的阴道滴虫分泌性蛋白,临床上用于女性阴道炎滴虫感染的辅助诊断。分类编码:6840。
5.念珠球菌(C.Alb)分泌蛋白检测试剂盒(胶体金法: 由念珠球菌(C.Alb)分泌蛋白检测试纸条/试纸卡和样品缓冲液组成。用于定性检测女性阴道分泌物样品和尿液样品中的念珠球菌分泌性蛋白,临床上用于女性念珠球菌阴道炎感染的辅助诊断。分类编码:6840。
6.幽门螺旋杆菌(H.P)分泌蛋白检测试剂盒(胶体金法): 由幽门螺旋杆菌(H.P)分泌蛋白检测试纸条/试纸卡和样品缓冲液组成。用于定性检测粪便样品中的幽门螺旋杆菌分泌性蛋白,临床上用于胃炎、消化道溃疡、十二指肠溃疡等炎症的辅助诊断。分类编码:6840。
7.结核菌(TB)分泌蛋白检测试剂盒(胶体金法): 由结核菌(TB)分泌蛋白检测试纸条/试纸卡和样品缓冲液组成。用于定性检测结核菌培养基、痰液中的结核菌分泌性蛋白,临床上用于结核病的辅助诊断。分类编码:6840。
8.人外周血白细胞去除试剂盒(阴性免疫磁微粒法): 由血液前处理液A、血液前处理液B、分离溶液和磁微粒混悬液组成。用于体外去除全血中的白细胞,以用于下游多种分析。分类编码:6840。
9.IL-1β、IL-6、IL-8、IL-10、TNF-α测定试剂盒(流式细胞仪法): 由捕获微球混合液、定量标准品、荧光检测试剂、校准微球、校准液A、校准液B、样品稀释液、微球缓冲液组成。用于检测血清或血浆中IL-1β、IL-6、IL-8、IL-10、TNF-α蛋白的含量。临床上用于疾病的辅助诊断、用药及预后干预。分类编码:6840。
10.IL-2、IL-4、IL-17、IFN-γ测定试剂盒(流式细胞仪法): 由捕获微球混合液、定量标准品、荧光检测试剂、校准微球、校准液A、校准液B、样品稀释液、微球缓冲液组成。用于检测血清或血浆中IL-2、IL-4、IL-17、IFN-γ蛋白的含量。临床上用于疾病的辅助诊断、用药及预后干预。分类编码:6840。
11.HER2三合一病理质控片: 由3株不同来源的经福尔马林固定、石蜡包埋的人乳腺癌细胞系样本组成。在特定的检测系统上,该质控片与HER2 DNA探针以及17号染色体探针一起使用,用于半定量监测原位杂交(ISH)的探针性能。分类编码:6840。
12.HER-2四合一病理质控片: 由4株不同来源的经福尔马林固定、石蜡包埋的人乳腺癌细胞株组成。用于监测抗-c-erbB-2/HER-2抗体的免疫组化染色性能。分类编码:6840。
13.HER2双染原位杂交三合一病理质控片: 由3株不同来源的经过福尔马林固定、石蜡包埋的肿瘤细胞系组成。在专用的检测系统上,与特定探针一起使用,用于临床检测实验的质量控制。分类编码:6840。
14.二硝基苯(DNP)抗体试剂: 由二硝基苯(DNP)兔单克隆抗体、含载体蛋白和防腐剂的缓冲液组成。临床上,与HER2/CEN17双探针检测试剂盒配合使用,用于检测DNP标记的HER2 DNA探针和17号染色体探针。分类编码:6840。
15.趋化因子五联检测试剂盒(流式细胞仪法): 由捕获微球混合液(聚苯乙烯、抗人CXCL8/IL-8单抗、抗人CCL5/RANTES单抗、抗人CXCL9/MIG单抗、抗人CCL2/MCP-1单抗、抗人CXCL10/IP-10单抗)、定量标准品(人体重组蛋白冻干粉)、荧光检测试剂(PE标记的微球检测抗体)、校准微球(聚苯乙烯磁性粒子微球)、校准液A(藻红蛋白荧光素标记的对照抗体)、校准液B(异硫氰酸荧光素标记的对照抗体)、样品稀释液(缓冲液、氯化钠、胎牛血清、防腐剂)组成。与流式细胞仪配合使用,用于样本中5种趋化因子(CXCL8/IL-8、CCL5/RANTES、CXCL9/MIG、CCL2/MCP-1、CXCL10/IP-10)含量的检测。临床上用于评估机体免疫功能。分类编码:6840。
16.基因测序文库试剂盒(转座酶法): 由试剂1(片段化缓冲液、片段化酶、扩增缓冲液、扩增酶、洗脱液)、试剂2(标签引物)、试剂3(磁珠)组成。与基因测序的通用试剂结合Illumina基因测序系统一起使用,用于处理人类基因组DNA、单细胞扩增产物、cDNA并进行文库构建。分类编码:6840。
17.基因测序用测序试剂盒: 由dNTP、反应酶、测序引物、缓冲液等组成。与基因测序用文库试剂盒、基因测序用模板试剂盒及基因测序用芯片结合Ion torrent测序平台一起使用,用于处理从组织样本中提取的人类基因组DNA以及由此产生的样本库的目标序列。不用于人全基因组或从头测序。分类编码:6840。
18.AML/MDS探针芯片(原位杂交法): 由AML/MDS探针芯片、样本片、芯片杂交缓冲液组成。通过一次杂交试验,定性检测样本中P53、PML/RARA、KMT2A、AML1/ETO、5q31(EGR1/TERT)、CBFB/MYH11、7q31(D7S486/CSP7)和D20S108/CSP8基因是否存在异常。临床上用于白血病的辅助诊断。分类编码:6840。
19.ALL探针芯片(原位杂交法): 由ALL探针芯片、样本片、芯片杂交缓冲液组成。通过一次杂交试验,定性检测样本中MYC、ETV6/AML1、IGH、BCR/ABL1(DF)、E2A、CDKN2A/CSP17、KMT2A、4/10基因是否存在异常。临床上用于指导酪氨酸激酶抑制剂用药。分类编码:6840。
20.MPN探针芯片(原位杂交法): 由MPN探针芯片、样本片、芯片杂交缓冲液组成。通过一次杂交试验,定性检测样本中FGFR1、PDGFRB、PDGFRA、BCR/ABL1(DF)基因是否存在异常情况。临床上用于指导酪氨酸激酶抑制剂用药。分类编码:6840。
21.ph-like ALL探针芯片(原位杂交法): 由ph-like ALL探针芯片、样本片、芯片杂交缓冲液组成。通过一次杂交试验,定性检测样本中CRLF2、PDGFRB、ABL1、CSF1R、BCR/ABL1(DF)、ABL2、JAK2、EPOR基因是否存在异常。临床用于Ph样急性淋巴细胞白血病的辅助诊断。分类编码:6840。
22.全自动血库系统: 由加样器、传送装置、打孔机构、孵育器、离心机、判读仪、条码扫描装置、电脑控制软件组成。临床上用于检测本公司生产的ABO、RhD血型抗原检测卡,ABO、Rh(D)血型定型检测卡,ABO、Rh血型抗原检测卡及抗人球蛋白检测卡。实现自动化样本分配、试剂分配、孵育、离心、结果判读(阴性、阳性)及储存。分类编码:22-01。
23.中性检测卡(微柱凝胶法): 主要由8个微孔管、右旋糖苷聚体与防腐剂等组成。通过抗原、抗体反应和分子筛作用,实现凝集红细胞与未凝集红细胞的分离。临床上用于检测红细胞的凝集反应。分类编码:6840。
24.基因测序用文库试剂盒(DNA打断连接法): 由末端修复混合液、末端修复缓冲液、T4 DNA连接酶、T4 DNA连接缓冲液、PCR混合液、适用于Illumina测序平台的接头、通用引物和序列标签引物1-12组成。用于Illumina二代测序平台的DNA测序文库的构建。分类编码:6840。
25.测序用文库制备试剂盒: 主要由片段捕获反应液、引物消化酶、连接缓冲液、DNA连接酶、文库扩增反应液、扩增PCR引物、洗脱液、特异性接头混合液1-96、DNA纯化磁珠等组成。通过多重PCR技术进行目的基因扩增,再使用引物消化酶对扩增产物进行切割,形成可以连接特异接头混合液的平末端,在连接缓冲液和DNA连接酶的作用下形成可用于Ion torrent测序平台的文库。分类编码:6840。
26.表皮生长因子受体v Ⅲ(EGFR v Ⅲ)抗体试剂(免疫组织化学法): 由表皮生长因子受体v Ⅲ(EGFR v Ⅲ)抗体、缓冲液组成。可用于体外定性检测经10%中性缓冲福尔马林固定、石蜡包埋人体组织中的EGFR v Ⅲ蛋白,临床上用于多种肿瘤(如乳腺癌、肝癌、结肠癌)的新型诊断和治疗靶点。分类编码:6840。
27.酪氨酸激酶受体(ROS1)抗体试剂(免疫组织化学法): 由酪氨酸激酶受体(ROS1)抗体试剂组成。临床上具有非小细胞肺癌的诊断价值或用于ROS1基因重排肺癌的筛查。分类编码:6840。
28.结核分枝杆菌分泌蛋白(Ag85B)(免疫组织化学法): 由结核分枝杆菌分泌蛋白(Ag85B)抗体试剂组成。在常规染色基础上进行免疫组织化学染色,临床上具有结核病病理诊断价值。分类编码:6840。
29.表皮生长因子受体L858R(EGFR L858R)突变蛋白抗体试剂(免疫组织化学法): 由表皮生长因子受体L858R突变蛋白(EGFR L858R)抗体、缓冲液组成。可用于体外定性检测经10%中性缓冲福尔马林固定、石蜡包埋人体组织中的EGFR L858R蛋白,临床上具有非小细胞肺癌的诊断价值。分类编码:6840。
30.MDS探针芯片(原位杂交法): 由MDS探针芯片、样本片、芯片杂交缓冲液组成。通过一次杂交试验,定性检测样本中5q33(CSF1R/TERT)、D20S108、5q31(EGR1/TERT)、X/Y、7q31(D7S522/CSP7)、7q31(D7S486/CSP7)基因是否存在异常。临床上用于骨髓增生异常综合征的辅助诊断。分类编码:6840。
31.IFN-γ/IL-4检测试剂(流式细胞仪法): 由磷酸盐缓冲液(PBS)、荧光FITC/PE标记的IFN-γ/IL-4单克隆抗体组成。通过流式细胞法检测人体生物标本中IFN-γ和IL-4,临床上用于慢性淋巴细胞白血病(CLL),感染性疾病的辅助诊断。分类编码:6840。
32.文库构建与纯化试剂盒: 由T4 DNA聚合酶、T4多聚核苷酸激酶、Taq DNA聚合酶、T4 DNA连接酶、T4连接酶缓冲液、腺嘌呤核苷三磷酸、聚乙二醇4000、聚乙二醇8000、氯化钠脱氧核糖核苷三磷酸、去离子水、PCR引物、高保真PCR酶、羧基磁珠组成。用于Illumina二代测序文库构建以及纯化等步骤。分类编码:6840。
33.文库制备试剂盒: 由缓冲液1、反应酶1、缓冲液2、反应酶2、接头标签、PCR扩增混合液、PCR引物混合液和说明书组成。用于Illumina 测序平台的DNA测序文库的构建。分类编码:6840。
34.基因测序用文库试剂盒: 由PCR混合液、适用于Illumina测序平台的通用引物和序列标签引物1-12组成。通过一步PCR扩增,获得用于Illumina二代测序平台DNA文库构建并可根据扩增引物中的Index序列获取样本测序信息。不适用于人全基因组测序。分类编码:6840。
二、按照II类医疗器械管理的产品(22个)
1.微量元素分析仪: 由主机和软件组成。利用分光光度法,通过测量手掌上的测量点,获得皮肤内矿物质和重金属含量。用于检测人体皮肤内的矿物质和重金属含量,辅助筛查人体内重金属中毒或矿物质失衡引起的疾病。分类编码:07-00。
2.胶质纤维酸性蛋白(GFAP)测定试剂盒(磁微粒化学发光法): 由胶质纤维酸性蛋白检测试剂条(含抗体试剂、酶标试剂、磁分离试剂、底物液、洗液)、质控品、校准品、干燥剂、说明书组成。用于体外定量检测人血清样本中胶质纤维酸性蛋白的含量。临床上主要用于脑外伤的辅助诊断。分类编码:6840。
3.人14-3-3 eta蛋白测定试剂盒(光激化学发光法): 由试剂1(抗14-3-3 eta蛋白抗体包被的发光微粒)、试剂2(生物素标记的抗14-3-3 eta蛋白抗体)、校准品(重组抗原14-3-3 eta蛋白)、低水平质控品、高水平质控品组成。用于LiCA 500系列自动光激化学发光分析系统,对人血清中14-3-3 eta蛋白进行定量测定。临床上用于类风湿关节炎的辅助诊断。分类编码:6840。
4.紫杉醇测定试剂盒(胶乳免疫比浊法): 由试剂1(紫杉醇共轭药物)、试剂2(紫杉醇抗体修饰颗粒)组成。用于定量检测人血浆样本中紫杉醇药物浓度。临床上可结合其他临床信息用于调整药物的使用剂量,提高疗效和减少不良反应。分类编码:6840。
5.伊马替尼测定试剂盒(胶乳免疫比浊法): 由试剂1(磷酸氢二钠柠檬酸缓冲液)、试剂2(伊马替尼抗体修饰颗粒)、校准品、质控品组成。用于定量检测人血浆样本中伊马替尼药物浓度。临床上结合其他临床信息用于及时调整用药剂量,提高化疗效果和减少不良反应。分类编码:6840。
6.5-氟尿嘧啶测定试剂盒(胶乳免疫比浊法): 由试剂1(5-氟尿嘧啶共轭药物)、试剂2(5-氟尿嘧啶抗体修饰颗粒)组成。用于定量检测人血浆样本中5-氟尿嘧啶药物浓度。临床上结合其他临床信息,可为医师提供剂量管理的辅助作用。分类编码:6840。
7.多西紫杉醇测定试剂盒(胶乳免疫比浊法): 由试剂1(多西紫杉醇共轭药物)、试剂2(多西紫杉醇抗体修饰颗粒)组成。用于对人血浆样本中多西紫杉醇(DTX)药物浓度的体外定量检测,临床上结合其他临床信息来进行剂量管理,提高疗效和减少不良反应。分类编码:6840。
8.可溶性CD14亚型测定试剂盒(化学发光免疫法): 由碱性磷酸酶标记的抗可溶性CD14亚型多克隆抗体、包被了抗可溶性CD14亚型单克隆抗体的磁性粒子、化学发光底物、样本稀释缓冲液、样本洗涤缓冲液组成。用于体外定量检测人全血或血浆中可溶性CD14亚型的浓度。临床上用于脓毒症的诊断及预后评估和监测疾病的过程以及对脓毒症治疗干预措施的反应。分类编码:6840。
9.人去唾液酸糖蛋白受体H2亚基(sH2a)定量检测试剂盒(酶联免疫吸附法): 由反应板、酶标抗体、标准品、稀释液、TMB底物溶液A、TMB底物溶液B、终止液和质控品组成。用于人血清样本中可溶形式的去唾液酸糖蛋白受体H2亚基(sH2a)的定量检测。临床上用于脂肪肝、酒精性肝炎、药物性肝炎、自身免疫性肝炎、病毒性肝炎、肝硬化等肝损伤疾病的辅助诊断。分类编码:6840。
10.抗体IgG检测专用质控: 由包被有质控抗原的质控膜条、检验对照、靶值参照表组成。用于免疫印迹法和欧蒙印迹法检测系统体外检测的质量控制。分类编码:6840。
11.兔单克隆阴性质控抗体: 由兔单克隆抗体组成。用于福尔马林固定石蜡包埋组织切片内兔免疫球蛋白非特异性结合的质控。分类编码:6840。
12.细胞葡萄糖代谢检测试剂盒: 由荧光染料Ⅰ、荧光染料Ⅱ、荧光染料Ⅲ、培养基、缓冲液、裂解液组成。用于体液样本中有核细胞的培养,以区分细胞有氧糖酵解水平高低。临床上用于炎症、免疫性疾病的辅助诊断。分类编码:6840。
13.子痫前期检测试剂盒(斑点扩散法): 主要由检测卡、染色结果示例、滴管、尿杯组成。患有子痫前期的孕妇尿液中存在错误折叠蛋白,错误折叠蛋白可与染色液特异性结合,在纤维素膜上呈现出显著的不同于正常蛋白的扩散方式。临床上通过定性检测孕妇尿液中的错误折叠蛋白来辅助诊断子痫前期。分类编码:6840。
14.帕利哌酮检测试剂盒(胶乳免疫比浊法): 由试剂1(R1:帕利哌酮共轭药物)、试剂2(R2:帕利哌酮抗体修饰颗粒 )、校准品、质控品组成。临床上通过测定人血清样本中帕利哌酮的浓度控制患者的用药剂量。分类编码:6840。
15.利培酮检测试剂盒(胶乳免疫比浊法): 由试剂1(R1:利培酮共轭药物)、试剂2(R2:利培酮抗体修饰颗粒)、校准品、质控品组成。临床上通过测定人血浆样本中利培酮浓度控制患者的用药剂量。分类编码:6840。
16.伊马替尼血药浓度测定试剂盒(液相色谱-串联质谱法): 由校准品、质控品、内标等组成。通过液相色谱-串联质谱法,体外定量检测人指尖外周血采集卡干血斑中伊马替尼的浓度,临床上为医生控制患者用药剂量提供参考。分类编码:6840。
17.尿酸代谢物检测试剂盒(比色法): 由缓冲液、酶物、针探(显色液)、标准物质组成。通过对人体尿液的检测定性检测人体尿酸(次黄嘌呤,黄嘌呤)衍生物代谢是否正常,临床上用于代谢综合征的辅助诊断。分类编码:6840。
18.嗜酸性粒细胞阳离子蛋白酶标特异性抗体: 主要由?-半乳糖苷酶-抗IgE (小鼠单克隆抗体)、叠氮化钠组成。与嗜酸性粒细胞阳离子蛋白检测试剂(荧光免疫法)配套使用,临床上通过体外定量检测人血清中的嗜酸性粒细胞阳离子蛋白,用于辅助诊断嗜酸性粒细胞介导的炎症性疾病,如哮喘。分类编码:6840。
19.胰弹性蛋白酶1(E1)检测试剂盒(酶联免疫法): 由酶标板、样本/洗涤缓冲液、标准液1-4、对照液1、对照液2、生物素-抗生蛋白链菌素-过氧化物酶(POD)标记的抗E1单克隆抗体、底物液、终止液组成。通过酶联免疫方法定量测定人粪便样本中E1。临床上用于诊断或排除与胃肠病状相关的胰腺疾病。分类编码:6840。
20.胍基乙酸和肌酸测定试剂盒(串联质谱法): 由内标品、高水平质控品、低水平质控品、质控品质量分析报告、内标品质量分析报告组成。通过串联质谱(MS/MS)技术,测定滤纸干血片中胍基乙酸(guanidineacetic acid,GAA)和肌酸(creatine,CRE)的浓度,适用于0-15岁(包括新生儿)及大于15岁人群的胍基乙酸和肌酸水平异常检测,临床上用于胍基乙酸甲基转移酶缺陷的辅助诊断。分类编码:6840。
21.葡萄糖校准液: 由葡萄糖、杀菌剂、稳定剂、磷酸盐稀释剂组成。配合葡萄糖检测仪使用,主要用于生物传感器类葡萄糖检测仪的校准。分类编码:6840。
22.精子染色质结构检测试剂盒: 由A试剂(盐酸、Tween-20、PBS)、B试剂(吖啶橙、水)组成。用于人体精子染色质的染色,判断染色质DNA断裂水平和计算发生DNA断裂的精子比例,同时还可通过染色质与蛋白结合的程度分析未成熟精子的比例。分类编码:6840。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。