异烟酰氯-异烟酰乙酸乙酯分子式

你哪条

中文名称: 氯乙烷 英文名称: chloroethane 中文名称2:乙基氯 英文名称2:ethyl chloride CAS No.: 75-00-3 分子式: C2H5Cl 分子量: 64.52 理化特性 主要成分: 纯品 外观与性状: 无色气体,有类似醚样的气味。 熔点(℃): -140.8 沸点(℃): 12.5 相对密度(水=1): 0.92 相对蒸气密度(空气=1): 2.20 饱和蒸气压(kPa): 53.32(-3.9℃) 燃烧热(kJ/mol): 1349.3 临界温度(℃): 187.2 临界压力(MPa): 5.23 辛醇/水分配系数的对数值: 1.54 闪点(℃): -43(O.C) 引燃温度(℃): 510 爆炸上限%(V/V): 14.8 爆炸下限%(V/V): 3.6 溶解性: 微溶于水,可混溶于多数有机溶剂。

主要用途

要用作四乙基铅、乙基纤维素及乙基咔唑染料等的原料。也用作烟雾剂、冷冻剂、局部、杀虫剂、乙基化剂、烯烃聚合溶剂、汽油抗震剂等。还用作聚丙烯的催化剂,磷、硫、油脂、树脂、蜡等的溶剂。农药、染料、医药及其中间体的合成。

健康危害

有刺激和麻醉作用。高浓度损害心、肝、肾。吸入2%~4%浓度时可引起运动失调、轻度痛觉减退,并很快出现知觉消失,但其刺激作用非常轻微;高浓度接触引起麻醉,出现中枢抑制,可出现循环和呼吸抑制。皮肤接触后可因局部迅速降温,造成冻伤。 燃爆危险: 本品易燃,具刺激性。

氯乙烯又名乙烯基氯(Vinyl chloride)是一种应用于高分子化工的重要的单体,可由乙烯或乙炔制得。为无色、易液化气体,沸点-13.9℃,临界温度142℃,临界压力5.22MPa。氯乙烯是有毒物质,肝癌与长期吸入和接触氯乙烯有关。它与空气形成爆炸混合物,爆炸极限4%~22%(体积),在压力下更易爆炸,贮运时必须注意容器的密闭及氮封,并应添加少量阻聚剂。

CAS No.: 75-01-4 分子式: C2H3Cl 结构式: CHCl=CH2 分子量: 62.50 有害物成分 含量 CAS No. 氯乙烯 ≥99.99% 75-01-4 主要成分: 含量: 纯度≥99.99%。 外观与性状: 无色、有醚样气味的气体。 pH:无意义 熔点(℃): -159.8 沸点(℃): -13.4 相对密度(水=1): 0.91 相对蒸气密度(空气=1): 2.15 饱和蒸气压(kPa): 346.53(25℃) 燃烧热(kJ/mol): 无资料 临界温度(℃): 142 临界压力(MPa): 5.60 辛醇/水分配系数的对数值: 1.38 闪点(℃): 无意义 引燃温度(℃): 415 爆炸上限%(V/V): 31.0 爆炸下限%(V/V): 3.6

聚氯乙烯的结构式为[CH2-CHCl]n,是由氯乙烯单体通过自由基聚合而成的一种聚合物,英文名polyvinyl chloride,缩写为PVC。聚氯乙稀树脂为白色或浅**粉末,透明度胜于聚乙烯、聚丙烯,差于聚苯乙烯。它是世界上使用量最大的树脂之一,价格便宜,应用广泛, 其制品形式十分丰富,可分为硬聚氯乙烯、软聚氯乙烯、聚氯乙烯糊三大类。硬聚氯乙烯的硬度高于低密度聚乙烯,而低于聚丙烯,在屈折处会出现白化现象。主要用于管材、门窗型材、片材等挤出产品,以及管接头、电气零件等注塑件和挤出吹型的瓶类产品,它们约占聚氯乙烯65%以上的消耗。软聚氯乙烯主要用于压延片、汽车内饰品、手袋、薄膜、标签、电线电缆、医用制品等。聚氯乙烯糊约占聚氯乙烯制品的10%,主要用产品有搪塑制品等。

PVC粉状树脂可以按照粉状树脂的结构不同分为紧密型和疏松型两种:紧密型呈乒乓球状,吸收增塑剂的能力低,主要用于硬质PVC制品的生产;疏松型呈棉花团状,可大量吸收增塑剂,常用于软质PVC的生产。

聚氯乙稀有较好的电气绝缘性能,可作低频绝缘材料,其化学稳定性也好。由于聚氯乙稀的热稳定性较差,长时间加热会导致分解,放出HCL气体,使聚氯乙稀变色,所以其应用范围较窄,使用温度一般在-15~55度之间。

PVC按分子量的大小可分为通用型和高聚合度型两大类。通用型PVC的平均聚合度为500~1800,高聚合度型PVC的平均聚合度则大于1800。常用的PVC树脂大多为通用型。

1.PVC一般软制品。

利用挤出机可以挤成软管、电缆、电线等;利用注射成型机配合各种模具,可制成塑料凉鞋、鞋底、拖鞋、玩具、汽车配件等。

2.PVC薄膜。

PVC与添加剂混合、塑化后,利用三辊或四辊压延机可制成规定厚度的透明或有色薄膜。这些压延成型的薄膜可以通过剪裁,热合加工包装袋、雨衣、桌布、窗帘、广告膜、充气玩具等。宽幅的透明薄膜可以供温室、塑料大棚及地膜之用。经双向拉伸的薄膜,所受热收缩的特性,可用于收缩包装。同时。PVC薄膜是最好的三维表面膜制作材料。

3.PVC人造革。

有衬底的人造革是将PVC糊涂敷于布上或纸上,然后在100摄氏度以上塑化而成。也可以先将PVC与助剂压延成薄膜,再与衬底压合而成。无衬底的人造革则是直接由压延机压延成一定厚度的软制薄片,再压上花纹即可。人造革可以用来制作皮箱、皮包、书的封面、沙发及汽车的坐垫等,还有地板革,用作建筑物的铺地材料。

4.PVC泡沫制品。

软质PVC混炼时,加入适量的发泡剂做成片材,经发泡成型为泡沫塑料,可作泡沫拖鞋、凉鞋、鞋垫、及防震缓冲包装材料。也可用挤出机基础成低发泡PVC板材和异型材,可替代木材试用,是一种新型的建筑才材料。

5.PVC透明片材。

PVC中加冲击改性剂和有机锡稳定剂,经混合、塑化、压延而成为透明的片材。利用热成型可以做成薄壁透明容器或用于真空吸塑包装,是优良的包装材料和装饰材料。

6.PVC硬板和板材。

PVC中加入稳定剂、润滑剂和填料,经混炼后,用挤出机可挤出各种口径的硬管、异型管、波纹管,用作下水管、饮水管、电线套管或楼梯扶手。将压延好的薄片重叠热压,可制成各种厚度的硬质板材。板材可以切割成所需的形状,然后利用PVC焊条用热空气焊接成各种耐化学腐蚀的贮槽、风道及容器等。

7.PVC其它用途。

门窗有硬质异型材料组装而成。在有些国家已与木门窗铝窗等共同占据门窗的市场;仿木材料、代钢建材(北方、海边);中空容器;一次性医疗器械产品

甲烷分子中两个氢原子被氯取代而生成的化合物,分子式CH2Cl2。二氯甲烷是无色、透明、比水重、易挥发的液体,有类似醚的气味和甜味,不燃烧,但与高浓度氧混合后形成爆炸的混合物。二氯甲烷微溶于水,与绝大多数常用的有机溶剂互溶,与其他含氯溶剂、、乙醇也可以任意比例混溶。室温下二氯甲烷难溶于液氨中,能很快溶解在酚、醛、酮、冰醋酸、磷酸三乙酯、甲酰胺、环己胺、乙酰乙酸乙酯中。纯二氯甲烷无闪点,含等体积的二氯甲烷和汽油、溶剂石脑油或甲苯的溶剂混合物是不易燃的,然而当二氯甲烷与丙酮或甲醇液体以 10 :1 比例混合时,其混合特具有闪点,蒸气与空气形成爆炸性混合物,爆炸极限6.2%~15.0%(体积)。二氯甲烷是甲烷氯化物中毒性最小的,其毒性仅为四氯化碳毒性的 0.11% 。如果二氯甲烷直接溅入眼中,有疼痛感并有腐蚀作用。二氯甲烷的蒸汽有麻醉作用。当发生严惩的中毒危险时应立即脱离接触并移至新鲜空气处,一些中毒症状就会得到缓解或消失,不会引起持久性的损害。

二氯甲烷-物化性质

外观与性状:无色透明易挥发液体。具有类似醚的刺激性气味 沸点:39.8℃ 蒸汽压:30.55kPa(10℃) 熔 点:-95.1℃ 相对密度:1.3266(20/4℃) 水溶性:20 G/L (20 ?C) 自燃点:640℃。 粘度(20℃):0.43mPa?s。 折射率nD(20℃):1.4244。 临界温度:237℃, 临界压力:6.0795MPa。

溶解性:溶于约50倍的水,溶于酚、醛、酮、冰醋酸、磷酸三乙酯、乙酰乙酸乙酯、环己胺。与其他氯代烃溶剂乙醇、和N,N-二甲基甲酰胺混溶。

热解后产生HCl和痕量的光气,与水长期加热,生成甲醛和HCl。进一步氯化,可得CHCl3和CCl4。无色易挥发液体。难燃烧。蒸气与空气形成爆炸性混合物,爆炸极限6.2%~15.0%(体积)。二氯甲烷与氢氧化钠作用生成甲醛。工业中,二氯甲烷由天然气与氯气反应制得,经过精馏得到纯品,是优良的有机溶剂,常用来代替易燃的石油醚、等,并可用作牙科局部、制冷剂和灭火剂等。对皮肤和粘膜的刺激性比氯仿稍强,使用高浓度二氯甲烷时应注意。

安定性:在一般温度(常温)下没有湿气时,二氯甲烷比其同类物质(氯仿及四氯化碳)稳定。

危害分解性:长期与水接触会缓慢分解产生氯化氢。

危害之聚合:不会发生。

反应性及不相容性:

1.一般金属:於室温下使其少许的分解。

2.当受相当於或少於 25 克**炸药的震荡时,二氯甲烷与四氧化二氮的混合物具有爆炸性。

3.与锂的碎片混合,对震荡很敏感且会爆炸,有时爆炸程度相当剧烈。

4.如果空气中含有高浓度的氧气,或在液态氧中,以及在四氧化氮中有钾、钠、钾-钠合金,种种状况下都会形成爆炸性混合物。

5.硝酸:形成爆炸性产物。

6.强氧化剂:可能起爆炸性反应。

7.强酸:可能起爆炸性反应。

8.铁、某些不锈钢、铜及镍:高温及水存在下会腐蚀此类金属。

9.铝粉:於适当压力,95℃下会产生无法控制的放热反应。

10.胺类:放热反应。

11.会与下列化合物激烈反应:胺类、锂、硝酸、钾化钠、、、、、

12.塑胶、橡皮、和一些涂料表层会被分解。

13.有可能聚集静电荷而引发蒸汽爆炸。

二氯甲烷-用途

二氯甲烷具有溶解能力强和毒性低的优点,大量用于制造安全**胶片、聚碳酸酯,其余用作涂料溶剂、金属脱脂剂,气烟雾喷射剂、聚氨酯发泡剂、脱模剂、脱漆剂。

二氯甲烷为无色液体,在制药工业中做反应介质,用于制备氨苄青霉素、羟苄青霉素和先锋霉素等;还用作胶片生产中的溶剂、石油脱蜡溶剂、气溶胶推进剂、有机合成萃取剂、聚氨酯等泡沫塑料生产用发泡剂和金属清洗剂等。

二氯甲烷在中国主要用于胶片生产和医药领域。其中用于胶片生产的消费量占总消费量的50%,医药方面占总消费量的20%,清洗剂及化工行业消费量占总消费量的20%,其他方面占10%。

二氯甲烷-危害

环境影响

该物质对环境可能有危害,在地下水中有蓄积作用。对水生生物应给特别注意。还应注意对大气的污染。

健康危害

侵入途径:吸入、食入、经皮吸收。

健康危害:本品有麻醉作用,主要损害中枢神经和呼吸系统。人类接触的主要途径是吸入。已经测得,在室内的生产环境中,当使用二氯甲烷作除漆剂时,有高浓度的二氯甲烷存在。一般人群通过周围空气、饮用水和食品的接触,剂量要低得多。据估计,在二氯甲烷的世界产量中,大约80%被释放到大气中去,但是由于该化合物光解的速率很快,使之不可能在大气中蓄积。其初始降解产物为光气和一氧化碳,进而再转变成二氧化碳和盐酸。当二氯甲烷存在于地表水中时,其大部分将蒸发。有氧存在时,则易于生物降解,因而生物蓄积似乎不大可能。但对其在土壤中的行为尚须测定。

健康危害效应:

急性:1.鼻子及喉咙的轻微刺激。

2.於500~1,000 ppm 1~2小时可能会导致中枢神经系统的轻度抑制,如:头晕、头昏眼花、恶心、手脚麻木、疲劳,无法集中精神及协调性减低。

3.非常高浓度暴露可能导致丧失意识及亡。

皮肤:1.液体会刺激皮肤。

2.如流入手套内、鞋内或紧的衣内可能会严重刺激。

眼睛:1.液体及高浓度蒸气可能造成刺激。

2.液体可能导致角膜的短暂刺激。

食入:1.於动物实验中,二氯甲烷会被迅速吸收入体内造成中度毒性,症状如吸入。

慢性:1.吸入:於非常高浓度会造成肝及肾的损伤。亦有报告指出一再暴露於500~3,600 ppm会造成脑损伤。

2.致癌性:三研究指出长期暴露的工人并无癌症增多的迹象,但IARC将其列为疑似致癌物

氟利昂几种氟氯代甲烷和氟氯代乙烷的总称,主要是含氟和氯的烷烃衍生物,少数是环烷烃卤素衍生物,有的还含有溴原子。包括CCl3F(F-11)、CCl2F2(F-12)、CClF3(F-13)、CHCl2F(F-21)、CHClF2(F-22)、FCl2C-CClF2(F-113)、F2ClC-CClF2(F-114)、C2H4F2(F-152)、C2ClF5(F-115)、C2H3F3(F143)等等。以上氟里昂在常温下都是无色气体或易挥发液体,略有香味,低毒,化学性质稳定。其中最重要的是二氯二氟甲烷CCl2F2(F-12)。二氯二氟甲烷在常温常压下为无色气体;熔点-158℃,沸点-29.8℃,密度1.486克/厘米(-30℃);稍溶于水,易溶于乙醇、;与酸、碱不反应。二氯二氟甲烷可由四氯化碳与无水氟化氢在催化剂存在下反应制得,反应产物主要是二氯二氟甲烷,还有CCl3F和CClF3,可通过分馏将CCl2F2分离出来。

氟利昂-用途

由于氟利昂化学性质稳定,具有不燃、无毒、介电常数低、临界温度高、易液化等特性,因而广泛用作冷冻设备和空气调节装置的制冷剂。

氟利昂制冷剂

氟里昂制冷剂大致分为3类。

一是氯氟烃类产品,简称CFC。主要包括R11、R12、R113、R114、R115、R500、R502等,由于对臭氧层的破坏作用以及最大,被《蒙特利尔议定书》列为一类受控物质。

二是氢氯氟烃类产品,简称HCFC。主要包括R22、R123、R141b、R142b等,臭氧层破坏系数仅仅是R11的百分之几,因此,目前HCFC类物质被视为CFC类物质的最重要的过渡性替代物质。在《蒙特利尔议定书》中R22被限定2020年淘汰,R123被限定2030年。

三是氢氟烃类:简称HFC。主要包括R134A、R125、R32、R407C、R410A、R152等,臭氧层破坏系数为0,但是气候变暖潜能值很高。在《蒙特利尔议定书》没有规定其使用期限,在《联合国气候变化框架公约》京都议定书中定性为温室气体。

专家表示:我们目前所使用的所有制冷剂全部都是氟里昂制品,非氟里昂制冷剂到目前为止还没有研发出来。政府明令禁止的是第一类氯氟烃类产品,对于氢氯氟烃类产品和氢氟烃类制冷剂,还要有相当长的一段使用时间。所以,消费者千万不要谈“氟”色变。

此外,也大量用作雾化剂的组分,但由于它可能破坏大气臭氧层,现已限制使用。氟利昂的另一重要应用是作聚氨酯、聚苯乙烯和聚乙烯等泡沫塑料的发泡剂。R-113、R-11与其他溶剂的混合物还广泛用于电子工业和航空工业中作为溶剂,在纺织工业中用作纺织染整助剂(如整理油剂和洗涤剂)。氟利昂还是生产氟树脂的原料。由R-22可以生产四氟乙烯;由R-113可以生产三氟氯乙烯。三氟溴甲烷和1,1,2,2-四氟-1,2-二溴乙烷是效果良好的灭火剂,1,1,1-三氟-二氯-二溴乙烷可作为

氟利昂-危害

氟里昂是臭氧层破坏的元凶,它是本世纪20年代合成的,其化学性质稳定,不具有可燃性和毒性,被当作制冷剂、发泡剂和清洗剂,广泛用于家用电器、泡沫塑料、日用化学品、汽车、消防器材等领域。80年代后期,氟利昂的生产达到了高峰,产量达到了144万吨。在对氟利昂实行控制之前,全世界向大气中排放的氟利昂已达到了2000万吨。由于它们在大气中的平均寿命达数百年,所以排放的大部分仍留在大气层中,其中大部分仍然停留在对流层,一小部分升入平流层。在对流层相当稳定的氟利昂,在上升进入平流层后,在一定的气象条件下,会在强烈紫外线的作用下被分解,分解释放出的氯原子同臭氧会发生连锁反应,不断破坏臭氧分子。科学家估计一个氯原子可以破坏数万个臭氧分根据资料,2003年臭氧空洞面积已达2500万平方公里。臭氧层被大量损耗后,吸收紫外线辐射的能力大大减弱,导致到达地球表面的紫外线B明显增加,给人类健康和生态环境带来多方面的危害。据分析,平流层臭氧减少1%%,全球白内障的发病率将增加0.6-0.8%,即意味着因此引起失明的人数将增加1万到1.5万人。

由于氟里昂在大气中的平均寿命达数百年,所以排放的大部分仍滞留在大气层中,其中大部分停留在对流层,小部分升入平流层。

在对流层的氟里昂分子很稳定,几乎不发生化学反应。但是,当它们上升到平流层后,会在强烈紫外线的作用下被分解,含氯的氟里昂分子会离解出氯原子,然后同臭氧发生连锁反应(氯原子与臭氧分子反应,生成氧气分子和一氧化氯基;一氧化氯基不稳定,很快又变回氯原子,氯原子又与臭氧反应生成氧气和一氧化氯基……),不断破坏臭氧分子。

物质:四氟乙烯

化学品英文名称:tetrafluoroethylene

中文名称2:全氟乙烯

英文名称2:TFE 分子式:C2F4 分子量:100.01 CAS号:116-14-3

性质:无色无臭气体。熔点-142.5℃,沸点-76.3℃,不溶于水。比空气重。相对密度1.519,临界温度33.3℃,临界压力3.92MPa,燃点620℃。溶于丙酮、乙醇。自燃极限为11%-60%(体积),引燃温度只有180℃。有氧存在时,易形成不稳定易爆炸的过氧化物。 制备方法:二氟一氯甲烷经气化、预热、通入裂解炉,热裂解产含四氟乙烯单体的裂化气,经水洗、碱洗、压缩、冷冻脱水、干燥,分馏等工序,最后精馏得成品。

用途:制造聚四氟乙烯及其他氟塑料、氟橡胶和全氟丙烯的单体。可用作制造新型的热塑料、工程塑料、耐油耐低温橡胶、新型灭火剂和抑雾剂的原料。

健康危害:急性中毒:轻者有咳嗽、胸闷、头晕、乏力、恶心等;较重者出现化学性肺炎或间质型肺水肿;严重者出现肺水肿及心肌损害。吸入有机氟聚合物热解物后,可引起氟聚合物烟尘热。慢性中毒:常见有头痛、头晕、乏力、睡眠障碍等神经衰弱综合征和(或)腰背酸痛症状。可致骨骼损害。 环境危害:对大气可造成污染。 燃爆危险:本品易燃。

主要成分: 纯品 外观与性状: 无色液体,有氯仿样气味。 熔点(℃): -22.2 (有报道-22.35;-22.7) 沸点(℃): 121.2 相对密度(水=1):(20℃/4℃)1.6226 相对蒸气密度(空气=1): 5.83 饱和蒸气压(kPa): 2.11(20℃) 燃烧热(kJ/mol): 679.3 临界温度(℃): 347.1 临界压力(MPa): 9.74 折射率1.50566 辛醇/水分配系数的对数值: 2.88 溶解性: 不溶于水(溶于约10000倍体积的水),可混溶于乙醇、等多数有机溶剂。

主要用途

用作溶剂。

危险品信息

健康危害本品有刺激和麻醉作用。吸入急性中毒者有上呼吸道刺激症状、流泪、流涎。随之出现头晕、头痛、恶心、运动失调及酒醉样症状。口服后出现头晕、头痛、倦睡、恶心、呕吐、腹痛、视力模糊、四肢麻木,甚至出现兴奋不安、抽搐乃至昏迷,可致。慢性影响:有乏力、眩晕、恶心、酩酊感等。可有肝损害。皮肤反复接触,可致皮炎和湿疹。

燃爆危害本品可燃,有毒,具刺激性。

七氟丙烷

性质:无色的无气味气体,微溶于水

用途:灭火剂的原料,发射火箭的湿剂,配药测量的药量吸入器

危害:

四氯化碳为无色澄清易流动的液体,工业上有时因含杂质呈微**,具有芳香气味,易挥发。密度(20℃)1.595克/立方厘米、熔点-22.8℃,沸点76~77℃。 四氯化碳的蒸气较空气重约5倍,且不会燃烧。四氯化碳的蒸气有毒,它的麻醉性较氯仿为低,但毒性较高。吸入人体2~4毫升就可使人亡。 四氯化碳在水中的溶解度很小,且遇湿气及光即逐渐分解生成盐酸。易溶于各种有机溶剂,能与醇、醚、氯仿、苯等任意混合。对于脂肪、油类及多种有机化合物为一极优良的溶剂。

四氯化碳用作灭火剂时,不能灭活泼金属的火,因为活泼金属可以与之反应

DDT又叫滴滴涕,二二三,化学名为双对氯苯基三氯乙烷(Dichlorodiphenyltrichloroethane),化学式(ClC6H4)2CH(CCl3)。中文名称从英文缩写DDT而来,为白色晶体,不溶于水,溶于煤油,可制成乳剂,是有效的杀虫剂。为20世纪上半叶防止农业病虫害,减轻疟疾伤寒等蚊蝇传播的疾病危害起到了不小的作用。

轻度中毒可出现头痛、头晕、无力、出汗、失眠、恶心、呕吐,偶有手及手指肌肉抽动震颤等症状。重度中毒常伴发高烧、多汗、呕吐、腹泻;神经系统兴奋,上、下肢和面部肌肉呈强直性抽搐,并有癫痫样抽搐、惊厥发作;出现呼吸障碍、呼吸困难、紫绀、有时有肺水肿,甚至呼吸衰竭;对肝肾脏器损害,使肝肿大,肝功能改变;少尿、无尿、尿中有蛋白、红细胞等;对皮肤刺激可发生红肿、灼烧感、瘙痒,还可有皮炎发生,如溅入眼内,可使眼暂性失明。DDT一般毒性与六六六相同,属神经及实质脏器毒物,对人和大多数其它生物体具有中等强度的急性毒性。它能经皮肤吸收,是接触中毒的典型代表,由于其在常压时即使在12℃以下,也有一定的蒸发,所以吸入DDT蒸气亦能引起中毒。对人不论是故意的或是过失造成大量服用时,即能引起中毒

工业化学物品的有关问题

丙二醇

分子式:C3H8O2 结构式: 无色粘稠稳定的吸水性液体,几乎无味无臭,易燃, 低毒。粘度(20 ℃)60.5mpa.s,比热容(20 ℃)2.49kJ/(kg.℃),汽化热(101.3kpa)711kJ/kg。 与水、乙醇及多种有机溶剂混溶。 丙二醇可用作不饱和聚酯树脂的原料.

名称: 丙二醇

详细信息:

一、性质与用途

分子式:C3H8O2

结构式:CH3—CH—CH2

∣ ∣

OH OH

无色粘稠稳定的吸水性液体,几乎无味无臭,易燃,低毒。粘度(20 ℃)60.5mpa.s,比热容(20 ℃)2.49kJ/(kg.℃),汽化热(101.3kpa)711kJ/kg。与水、乙醇及多种有机溶剂混溶。丙二醇可用作不饱和聚酯树脂的原料,也是增塑剂、表面活性剂、乳化剂和破乳剂的原料。可用作防霉剂、水果催熟剂、防腐剂、防冻剂及烟草保湿剂。

二、质量指标(质量体系符合ISO9001:2000标准)

指标 医药级 工业优级品 工业一级品

外观 无色透明粘稠液体 无色透明粘稠液体 无色透明粘稠液体

含量 99.5 % min 99.5 % min 99.0% min

色度(铂-钴) 10 max 10 max 16 max

密度 (20/25 °C) 1.0350~1.4010 1.0350~1.4010 1.0350~1.4010

折射率(25°C) 1.4307~1.4317 1.431~1.435 1.426~1.435

馏程, IBP 184.0 °C min 184.0 °C min 183.0 °C min

馏程, DP 189.0 °C max 190.0 °C max 190.0 °C max

IR 检测 passed -- --

水分 0.2 wt% max 0.1 wt% max 0.2% max

碱度 0.0020 wt% max 0.0020 wt% 0.01% max

氯化物 0.007 wt% max -- --

硫酸盐 0.006 wt% max -- --

重金属 5 ppm max -- --

灼烧残渣 0.0070 wt% max -- --

氧化物质 Not required -- --

还原物质 Not required -- --

有机挥发分-氯仿 60 ppm max -- --

有机挥发分-二氧杂环乙烷 380 ppm max -- --

有机挥发分-二氯甲烷 600 ppm max -- --

有机挥发分-三氯乙烯 80 ppm max -- --

三、包装、储运

镀锌铁桶或烤漆桶包装,每桶净重200或215±0.5千克,亦可采用ISO TANK或按照客户的要求进行包装。

本品应储存于阴凉、通风、干燥处,按一般化学品规定储运

CAS No.: 57-55-6

聚乙二醇

名称:聚乙二醇(PEG)系列;通用化学名:聚乙二醇PEG、乙二醇聚氧乙烯醚

化学结构:HO(CH2CH2O)nH,由环氧乙烷聚合而成。

性能及用途:本系列产品无毒,有良好的溶解性、吸湿性、热稳定性,可作为有机合成的介质,日用化妆品工业用作保湿剂、粘度调节剂,造纸与农药用作润湿剂,在化妆品、制药、化纤、橡胶、塑料、造纸、油漆、建陶、电镀、农药、金属加工等行业中均有着极为广泛的用途,由于末端羟基的活性还可进一步醚化、酯化做成各种表面活性剂而得到更广泛的应用.

应用 1、 聚乙二醇系列产品可用于药剂。相对分子量较低的聚乙二醇可用作溶剂、助溶剂、分散剂,O/W型乳化剂和稳定剂,用于制作水泥悬剂、乳剂、注射剂等,也用作水溶性软膏基质和栓剂基质,相对分子量高的固体蜡状聚乙二醇常用于增加低分子量液体PEG的粘度和成固性,以及外偿其他药物;对于水中不易溶解的药物,本品可作固体分散剂的载体,以达到固体分散目的。 2、 聚乙二醇系列产品可作为酯型表面活性剂的原料。 3、可作为有机合成的介质及有较高要求的热载体,在日用化学工业中用作保湿剂、无机盐增溶剂、粘度调节剂;在纺织工业中用作柔软剂、抗静电剂;在造纸与农药工业中用作润湿剂。

物化性质: 密度 1.125 ;熔点 -65°C ;折射率 1.458-1.461; 闪点 171°C

指标/品种 外观 熔点 PHWFHG 平均分子量 粘度 羟值

PEG-200 无色透明 -50±2 6.0-8.0 190-210 22-23 534-590

PEG-400 无色透明 5±2 6.0-8.0 380-420 37-45 268-294

PEG-600 无色透明 20±2 6.0-8.0 570-630 1.9-2.1 178-196

PEG-800 白色膏体 28±2 6.0-8.0 760-840 2.2-2.4 133-147

PEG-1000 白色蜡状 37±2 6.0-8.0 950-1050 2.4-3.0 107-118

PEG-1500 白色蜡状 46±2 6.0-8.0 1425-1575 3.2-4.5 71-79

PEG-2000 白色固体 51±2 6.0-8.0 1800-2200 5.0-6.7 51-62

PEG-4000 白色固体 55±2 6.0-8.0 3600-4400 8.0-11 25-32

PEG-6000 白色固体 57±2 6.0-8.0 5500-7500 12-16 15-20

PEG-8000 白色固体 60±2 6.0-8.0 7500-8500 16-18 12-15

PEG-10000 白色固体 61±2 6.0-8.0 8600-10500 19-21 8-11

PEG-20000 白色固体 62±2 6.0-8.0 18500-22000 30-35 -

贮 存:本品无毒、难燃,可按一般化学品运输规定办理,贮存于干燥、通风处,避免阳光照射和雨淋。

一、性质

聚乙二醇,结构式HOCH2[CH2OCH2]nCH2OH或H[OCH2CH2]nOH,平均分子量200-8000的乙二醇高聚物。随着平均分子量的不同,性质也随之产生差异,从无色、无臭、黏稠液体至蜡状固体;毒性随分子量的增加而减少,分子量4000-8000的聚乙醇对人体安全。

聚乙二醇的吸湿性,随分子量的增大而降低,聚乙二醇8000几乎没有吸湿性,但能在高湿空气中缓蚀吸收水分。

聚乙二醇的两端羟基具有拟醇性质,能进行酯化和醚化反应。低分子量聚乙二醇的反应产物易于同油相混,高分子量聚乙二醇的反应产物趋于水溶性。在空气中加热时聚乙二醇发生氧化作用,在300℃以上醚键发生断裂,分子量愈大,被氧化的倾向愈大。可加入稳定剂对苯二酚等使其稳定。

聚乙二醇溶于水和醇、酯、乙二醇、醚等,不溶于脂肪烃。

聚乙二醇几乎无毒,对皮肤无刺激性。

二、应用

聚乙二醇的吸湿性小于低分子量二元醇,也小于甘油,因此聚乙二醇混合物物质对环境湿度变化不敏感,即使长期储存,这些物质的柔软性、塑性仍然优质不变。聚乙二醇与二甘醇或三甘醇相比不具挥发性。液体聚乙二醇200-600可提供广泛吸湿性选择,尤其适用于增塑剂、橡胶的助剂,可用于制备表面活性剂、油漆和油墨、制药、化妆品、清洗剂、造纸、纺织、食品添加剂,皮革加工、采油、木材加工、陶瓷、农业、电镀、照相材料、黏合剂、包装材料等。

聚乙二醇1500可用作润滑剂以及人造纺丝的纺织上浆剂;聚氯酯

独特的焐结性能几乎适用于所有织物。在聚氯酯中,聚乙二醇和聚氨酯反应形成线性化合物,作为织物的化学整理剂,经整理过的织物具有滑爽、柔软、弹性毛型感强、手感丰满等特点,而且能提高抗撕裂强度和耐磨性,还具有一定的抗静电防污等性能。聚乙二醇(PEG)在织物用聚氯酯(PU)涂层中具有透湿和热调节双重作用,温度升高时,PEG由结晶态熔融成胶态,伴随吸热和透湿性增强,温度下降时,PEG重新结晶,伴随放热和透湿性降低。PEG的相转变带来透湿性的突变:高温高透湿性,利于排汗去热,低温低透温性,适用于挡风保温。在20世纪80年代中期,美国开始将聚乙二醇加入中空纤维或将其用于织物的功能整理,使织物具有调节温度的功能。聚乙二醇作为多元醇组分在与MDI结合反应生成聚氨酯,再制成水分散液,可用于干法涂布织物,具有热调节作用与透湿作用等。

羊毛的防皱加工,可用聚乙二醇和N-羟甲基化物浸渍羊毛,再用低温等离子体处理的工艺,将丝织物用含紫外线吸收剂的整理浴浸渍,然后用聚乙二醇、乙二醇、对苯二甲酸制成的共聚物处理涤纶纤维,经干燥、热固,所有产品具有耐吸水性。聚乙二醇脂肪酸酯在纺织业中的应用很广,作为浆料可用于梳理、精纺、编织和针织纤维和纱线,并很容易退浆。将少量的聚乙二醇与羟乙基脂肪酰胺一起加入到黏性纺丝浴中,将少量的聚乙二醇与羟乙基脂肪酰胺一起加入到黏性纺丝浴中,可改善纤维及纤维膜的性能;用于人造纤维轮胎上浆,可改善与橡胶的粘合性,并给疏水性纤维如尼龙、聚酯等以耐摩、防滑和抗静电的复合功能。用于纺织的整理剂,可提供柔软性的良好的手感性。使用聚乙二醇还能改进涤纶纤维的染色性能。

三乙醇胺

1.英文名称:Triethanolamine

2.CAS:102-71-6

3.分子式:C6H15O3N 结构式:N(CH2CH2OH)3

4.相对分子量:149.19 密 度:1.1242

5.熔 点:21.2℃

6.沸 点:360℃

7..闪 点:193℃

8.折射率:1.4852

9.溶解性:有吸湿性,能与水、乙醇、丙酮等混溶。25℃时在苯中的溶解度4.2%。

10.化学性质:具有碱性,能吸收CO2和H2S,其水溶液呈碱性,能与无机酸或有机酸反应生成盐,还能和高级脂肪酸形成脂。

11.用 途:(1)、用于表面活性剂、切削油、防冻液,在金属加工工业中,可用来制备缓蚀剂,保护金属表面,防止氧化。

(2)、在电镀行业中,可代替,或采用微氰电镀,被称之为微氰或无氰无毒电镀,镀件内在质量完全可与氰镀件媲美。

(3)、水泥助磨剂主要原料(约占助磨剂配方总量的 75% 左右),加入助磨剂可以增加水泥产量 10%-20%。

(4)、直接加入水泥熟料助磨(比例约为万分之一),混合后球磨,不但可增加水泥产量,而且增加细度提高质量标号,降低能耗。

(5)、混凝土减水剂原料。

(6)、混凝土早强剂原料。

12.其他用途:

(1)、洗涤剂原料;(2)、美容品原料;(3)、护肤品、化妆品原料。

求高中化学有机物一章的公式概念技巧什么的

硝酸(nitric acid)

分子式:HNO?

化学性质:是一种有强氧化性、强腐蚀性的无机酸,酸酐为五氧化二氮。硝酸的酸性较硫酸和盐酸小(PKa=-1.3),在水中完全电离,

物理性质:易溶于水,常温下其稀溶液无色透明,浓溶液显棕色。

注意事项:硝酸不稳定,易见光分解,应在棕色瓶中于阴暗处避光保存,严禁与还原剂接触。

使用方法:硝酸在工业上主要以氨氧化法生产,用以制造化肥、炸药、硝酸盐等,在有机化学中,浓硝酸与浓硫酸的混合液是重要的硝化试剂。

玻璃清洁剂

玻璃清洁剂是用于清洗玻璃表面的油污,其主要成分是表面活性剂,略带碱性或具中性。

玻璃清洁剂其分子中同时具有亲水的极性基团与亲油的非极性基团,当它的加入量很少时,即能大大降低溶剂(一般是水)的表面张力以及液界面张力,并且具有润滑、增溶、乳化、分散和洗涤等作用。

玻璃清洁剂在家庭生活及工业生产的清洗中,有广泛的用途。

氢氧化钠

化学分子式:NaOH

俗称烧碱、火碱、苛性钠,因另一名称caustic soda而在香港称为哥士的,常温下是一种白色晶体,具有强腐蚀性。易溶于水,其水溶液呈强碱性,能使酚酞变红。氢氧化钠是一种极常用的碱,是化学实验室的必备药品之一。它的溶液可以用作洗涤液。

二氯甲烷

分式:CH2Cl2。

无色透明易挥发液体。具有类似醚的刺激性气味

分子量 84.94

沸点:39.8℃

蒸汽压 30.55kPa(10℃)

熔 点 -95.1℃

相对密度1.3266(20/4℃)

水溶性 20 G/L (20 ?C)

自燃点640℃。

粘度(20℃)0.43mPa·s。

折射率nD(20℃)1.4244。

临界温度237℃,

临界压力6.0795MPa。

溶解性 溶于约50倍的水,溶于酚、醛、酮、冰醋酸、磷酸三乙酯、乙酰乙酸乙酯、环己胺。与其他氯代烃溶剂乙醇、和N,N-二甲基甲酰胺混溶

热解后产生HCl和痕量的光气,与水长期加热,生成甲醛和HCl。进一步氯化,可得CHCl3和CCl4。无色易挥发液体。难燃烧。蒸气与空气形成爆炸性混合物,爆炸极限6.2%~15.0%(体积)。二氯甲烷与氢氧化钠作用生成甲醛。工业中,二氯甲烷由天然气与氯气反应制得,经过精馏得到纯品。

不可燃低沸点溶剂,常用来代替易燃的石油醚、等,并可用作牙科局部、制冷剂和灭火剂等。

纯氨水

分子式:NH3·H2O

分子量:35.045

性状:无色透明液体,有强烈的刺激性气味。

熔点:-78℃

蒸汽压:1.59kPa(20℃)

蒸气密度:(空气=1) 0.6

水中溶解度:完全互溶

比重:(水=1) 0.9

相对密度:氨含量越多,密度越小。质量分数28%的氨水相对密度0.91,35%的0.88。

电离常数:K=1.8×10ˇ-5(25℃)

稳定性:受热或见光易分解

其它:极易挥发出氨气。浓氨水对呼吸道和皮肤有刺激作用,并能损伤中枢神经系统。具有弱碱性。

发性

氨水易挥发出氨气,随温度升高和放置时间延长而增加挥发率,且浓度的增大挥发量增加。

腐蚀性

氨水有一定的腐蚀作用,碳化氨水的腐蚀性更加严重。对铜的腐蚀比较强,钢铁比较差,对水泥腐蚀不大。对木材也有一定腐蚀作用。

弱碱性

氨水中存在以下化学平衡:

NH3+H2O=(可逆)=NH3·H2O

NH3·H2O=(可逆)=NH4+ +OH-

因此仅有一小部分氨分子与水反应而成铵离子NH4+和氢氧根离子OH-,故呈弱碱性。

氨水具有碱的通性:

①能使无色酚酞试液变红色,能使紫色石蕊试液变蓝色,能使湿润红色石蕊试纸变蓝。实验室中常用此法检验NH3的存在。

②能与酸反应,生成铵盐。浓氨水与挥发性酸(如浓盐酸和浓硝酸)相遇会产生白烟。

NH3+HCl=NH4Cl (白烟)

NH3+HNO3=NH4NO3 (白烟)

而遇不挥发性酸(如硫酸、磷酸)无此现象。实验室中可用此法检验NH3或氨水的存在。

工业上,利用氨水的弱碱性来吸收硫酸工业尾气,防止污染环境。

SO2+2NH3·H2O=(NH4)2SO3+H2O

(NH4)2SO3+SO2+H2O=2NH4HSO3

还原剂

常见的还原剂主要有:

氢气(H2),碳(C),一氧化碳(CO)

活泼的金属单质,如Na,Al,Zn,Fe等.某些非金属单质,如H2,C,Si等.元素(如C,S等)处于低化合价时的氧化物,如CO,SO2等.元素(如Cl,S等)处于低化合价时的酸,如HCl,H2S等.元素(如Fe,S等)处于低化合价时的盐,如Na2SO3,FeSO4等.

在化合价有改变的氧化还原反应中,化合价由低变高的物质称作还原剂,可做抗氧化剂,具有还原性,被氧化,其产物叫氧化产物。

还原剂是相对的概念,因为同一物质可能随反应物质的不同,呈现还原剂或氧化剂的特性。

如:SO2+2HNO3→H2SO4+2H2O+NO2的反应中中SO2是还原剂。 但在H2S+SO2→S+H2O中,SO2却是氧化剂。

去污粉

主要成分是碳酸氢钠(工业用小苏打).介面活性剂,加了少量白土起吸附作用,细沙增加摩擦力,加了少量碱增加去污力,具有腐蚀性。很多里添有摩擦剂(细沙/二氧化硅),这就是为何能使物品用过后看起来很干净,但会使物体表面产生细微划痕。

不少无良餐馆用去污粉腌牛肉、猪肉,一是让肉丝膨胀入味,二是让肉质鲜嫩,增加好的口感。还有人在烫青菜时放一些去污粉(食粉)以使青菜过水后仍保持新鲜翠绿。

活化剂

active agent;activation

(一)活化剂是浮选药剂中调整剂之一。用以通过改变矿物表面的化学组成,消除抑制剂作用,使之易于吸附捕收剂。如磷酸乙二胺、磷酸丙二胺、二甲苯、氟硅酸钠、硫酸铵、氯化铵、硫酸亚铁、氢氧化铵等。

(二)由PdCl2·2H2O加络合剂、稳定剂组成。钯含量低、酸度小、稳定性好。操作温度15~32℃,浸渍时间3~7min。用于印制板化学镀铜系统的前处理操作。

(三)指配入胶料中后能增加促进剂活性,进而减少促进剂用量或缩短硫化时间的物质。有时也称促进助剂。加入少量活性剂能大大提高硫化胶的硫化度和耐热性。活性剂分无机和有机两类。无机活性剂主要是金属氧化物,以氧化锌和活性氧化锌最为重要。有机活性剂则以硬脂酸为代表。脂肪酸用量大时会降低硫化速度,但可使硫化比较充分,并能得到耐热性能好的交联结构。

松香

1.松林中特有的香味。

2.松脂的别名。

3.指松脂蒸馏后的物质。固体,透明,不溶于水,质硬而脆,淡**或棕色。是制造油漆、肥皂、纸、火柴等的工业原料。

4.松香是松树树干内部流出的油经高温熔化成水状,干结后变成块状固体(没有固定熔点),其颜色焦黄深红,是重要的化工原料,日常生活方面主要用在电路板焊接时作助焊剂,在乐器方面松香被涂抹在二胡、提琴、马头琴等弓弦乐器的弓毛上用来增大弓毛对琴弦的摩擦。

物理性质:松香为微黄至黄红色的透明固体,软化点70~90℃,比重1.070~1.085, 溶解热:15.8kcal/kg,热容:0.54kcal/kg·℃,导热系数:0.11kcal/m·h·℃,体积电阻率:5×1016Ωcm,闪点:216℃。松香还具有结晶特性,容易产生结晶现象,在丙酮等有机溶剂中会有结晶趋势,结晶临界温度约100℃,结晶松香熔点110~135℃,且难于皂化。此外,松香还具有旋光性,松香比旋值控制在0~15°之间(最佳点+7°)即为无结晶现象和结晶趋势最低的松香。

松香是重要的化工原料,广泛应用于各工业部门,主要用途如下:

1、肥皂工业 松香与纯碱或烧碱一起蒸煮,形成松香皂。松香皂具有很大的去污力,易溶于水,能溶解油脂,易起泡沫。松香具有粘性,可使肥皂不易开裂和酸败变质。

2、造纸工业 松香在造纸工业上用作抄纸胶料。松香与苛性钠制成松香钠皂,即胶料,胶料与纸浆混合并加入明矾,使松香成为不溶于水的游离树脂酸微粒附着在小纤维上,当纸浆在干燥圆筒上滚压加热时,松香软化填充在纤维之间,这种作用叫“上胶”或“施胶”。纸张“上胶”后,可增强抗水性,防止墨水渗透,改善强度和平滑度,减少伸缩度。

3、油漆涂料工业 松香易溶于各种有机溶剂,而且易成膜,有光泽,是油漆涂料的基本原料之一。松香在油漆中的作用是使油漆色泽光亮,干燥快,漆膜光滑不易脱落。

4、油墨工业 松香在印刷油墨中主要用作载色体,并增强油墨对纸张的附着力。油墨中若不用松香,印制成的墨迹就会色调呆滞,模糊不清。

5、粘合剂工业 以松香酯和氢化松香酯为基本原料的粘合剂,常用作热熔性粘合剂、压敏粘合剂和橡胶增粘剂。

6、橡胶工业 松香在橡胶工业上用作软化剂,可增加其弹性。歧化松香钾皂可作合成

7、食品工业 氢化松香甘油酯与天然糖胶树胶、蜡、醋酸乙烯等一起加热溶融,然后加香料、砂糖及色素等调匀,可制成口香糖。 在屠宰场中宰杀猪、牛、羊时,经过用脱毛机械操作之后,遗留在动物体和头部的毛可用由88-94%的熔融松香和6-12%的棉籽油所组成的脱毛剂来除去。

8、电气工业 用松香35%与光亮油65%配制成绝缘油在电缆上用作保护膜,起绝缘及耐热作用。松香和电木以及其他人造树脂相混合用作绝缘清漆

9、建筑材料工业 松香在建筑材料工业上主要用做混凝土起泡剂和地板花砖粘结剂。 松香也用作氯乙烯石棉瓷砖的粘结剂。 松香和亚麻油、碳 酸钙、木炭、颜料等在一起混合可制造地毡瓷砖。

抛光粉

抛光粉通常由氧化铈、氧化铝、氧化硅、氧化铁、氧化锆、氧化铬等组份组成,不同的材料的硬度不同,在水中的化学性质也不同,因此使用场合各不相同。氧化铝和氧化铬的莫氏硬度为9,氧化铈和氧化锆为7,氧化铁更低。氧化铈与硅酸盐玻璃的化学活性较高,硬度也相当,因此广泛用于玻璃的抛光。

为了增加氧化铈的抛光速度,通常在氧化铈抛光粉加入氟以增加磨削率。铈含量较低的混合稀土抛光粉通常掺有3-8的氟;纯氧化铈抛光粉通常不掺氟。

对ZF或F系列的玻璃来说,因为本身硬度较小,而且材料本身的氟含量较高,因此因选用不含氟的抛光粉为好。

虫胶片

虫胶是一种的热硬化性天然树脂,由虫胶树上的紫胶虫吸食·消化树汁后的分泌液在树上凝结干燥而成。将虫胶在水中煮沸,溶去一部分有色物质后所得到的黄棕色薄片即为虫胶片。虫胶的化学成分比较复杂,主成分是一些羟基羧酸内酯和交酯混合物的树酯状物质,平均相对分子质量约为1000。碱水解物的主要成分是9,10,16-三羟基十六烷酸和三环倍半萜烯酸,此外还有六羟基十四烷酸等多种长链的羟基脂肪酸。

虫胶片常温下不溶于水和酸,溶解于酒精等有机溶剂(125℃加热2.5小时却不溶于酒精),能快干而产生光泽、耐久的薄膜,对各种物体的表面显示高度的粘着性,坚固且富有弹性。因此,有防水、防潮、防锈、耐腐、对物体起保护作用。 能抵抗紫外线光。

在碱性溶液中可成良好胶片具有高粘着力。

能抗拒碳化氢溶剂如汽油等,具有耐油作用。

是一种低热非导体,其膨胀系数小,是良好的绝缘体。

外观:淡**碎片

产品特性:

虫胶片具有防潮、防锈、防腐、耐油、耐酸、粘结力强、绝缘性能好和化学性能稳定等优良特性。用作涂饰剂、绝缘漆、塑料薄膜包装粘着以及金属与金属(或玻璃、电木)/模具/食品保鲜剂等的粘接。

高二化学知识点总结,要人教版的,谢了

甲烷燃烧

CH4+2O2→CO2+2H2O(条件为点燃)

甲烷隔绝空气高温分解

甲烷分解很复杂,以下是最终分解。CH4→C+2H2(条件为高温高压,催化剂)

甲烷和氯气发生取代反应

CH4+Cl2→CH3Cl+HCl

CH3Cl+Cl2→CH2Cl2+HCl

CH2Cl2+Cl2→CHCl3+HCl

CHCl3+Cl2→CCl4+HCl (条件都为光照。 )

实验室制甲烷

CH3COONa+NaOH→Na2CO3+CH4(条件是CaO 加热)

乙烯燃烧

CH2=CH2+3O2→2CO2+2H2O(条件为点燃)

乙烯和溴水

CH2=CH2+Br2→CH2Br-CH2Br

乙烯和水

CH2=CH2+H20→CH3CH2OH (条件为催化剂)

乙烯和氯化氢

CH2=CH2+HCl→CH3-CH2Cl

乙烯和氢气

CH2=CH2+H2→CH3-CH3 (条件为催化剂)

乙烯聚合

nCH2=CH2→-[-CH2-CH2-]n- (条件为催化剂)

氯乙烯聚合

nCH2=CHCl→-[-CH2-CHCl-]n- (条件为催化剂)

实验室制乙烯

CH3CH2OH→CH2=CH2↑+H2O (条件为加热,浓H2SO4)

乙炔燃烧

C2H2+3O2→2CO2+H2O (条件为点燃)

乙炔和溴水

C2H2+2Br2→C2H2Br4

乙炔和氯化氢

两步反应:C2H2+HCl→C2H3Cl--------C2H3Cl+HCl→C2H4Cl2

乙炔和氢气

两步反应:C2H2+H2→C2H4→C2H2+2H2→C2H6 (条件为催化剂)

实验室制乙炔

CaC2+2H2O→Ca(OH)2+C2H2↑

以食盐、水、石灰石、焦炭为原料合成聚乙烯的方程式。

CaCO3 === CaO + CO2 2CaO+5C===2CaC2+CO2

CaC2+2H2O→C2H2+Ca(OH)2

C+H2O===CO+H2-----高温

C2H2+H2→C2H4 ----乙炔加成生成乙烯

C2H4可聚合

苯燃烧

2C6H6+15O2→12CO2+6H2O (条件为点燃)

苯和液溴的取代

C6H6+Br2→C6H5Br+HBr

苯和浓硫酸浓硝酸

C6H6+HNO3→C6H5NO2+H2O (条件为浓硫酸)

苯和氢气

C6H6+3H2→C6H12 (条件为催化剂)

乙醇完全燃烧的方程式

C2H5OH+3O2→2CO2+3H2O (条件为点燃)

乙醇的催化氧化的方程式

2CH3CH2OH+O2→2CH3CHO+2H2O(条件为催化剂)(这是总方程式)

乙醇发生消去反应的方程式

CH3CH2OH→CH2=CH2+H2O (条件为浓硫酸 170摄氏度)

两分子乙醇发生分子间脱水

2CH3CH2OH→CH3CH2OCH2CH3+H2O (条件为催化剂浓硫酸 140摄氏度)

乙醇和乙酸发生酯化反应的方程式

CH3COOH+C2H5OH→CH3COOC2H5+H2O

乙酸和镁

Mg+2CH3COOH→(CH3COO)2Mg+H2

乙酸和氧化钙

2CH3

又找到一个比较全的

甲烷燃烧

CH4+2O2→CO2+2H2O(条件为点燃)

甲烷隔绝空气高温分解

甲烷分解很复杂,以下是最终分解。CH4→C+2H2(条件为高温高压,催化剂)

甲烷和氯气发生取代反应

CH4+Cl2→CH3Cl+HCl

CH3Cl+Cl2→CH2Cl2+HCl

CH2Cl2+Cl2→CHCl3+HCl

CHCl3+Cl2→CCl4+HCl (条件都为光照。 )

实验室制甲烷

CH3COONa+NaOH→Na2CO3+CH4(条件是CaO 加热)

乙烯燃烧

CH2=CH2+3O2→2CO2+2H2O(条件为点燃)

乙烯和溴水

CH2=CH2+Br2→CH2Br-CH2Br

乙烯和水

CH2=CH2+H20→CH3CH2OH (条件为催化剂)

乙烯和氯化氢

CH2=CH2+HCl→CH3-CH2Cl

乙烯和氢气

CH2=CH2+H2→CH3-CH3 (条件为催化剂)

乙烯聚合

nCH2=CH2→-[-CH2-CH2-]n- (条件为催化剂)

氯乙烯聚合

nCH2=CHCl→-[-CH2-CHCl-]n- (条件为催化剂)

实验室制乙烯

CH3CH2OH→CH2=CH2↑+H2O (条件为加热,浓H2SO4)

乙炔燃烧

C2H2+3O2→2CO2+H2O (条件为点燃)

乙炔和溴水

C2H2+2Br2→C2H2Br4

乙炔和氯化氢

两步反应:C2H2+HCl→C2H3Cl--------C2H3Cl+HCl→C2H4Cl2

乙炔和氢气

两步反应:C2H2+H2→C2H4→C2H2+2H2→C2H6 (条件为催化剂)

实验室制乙炔

CaC2+2H2O→Ca(OH)2+C2H2↑

以食盐、水、石灰石、焦炭为原料合成聚乙烯的方程式。

CaCO3 === CaO + CO2 2CaO+5C===2CaC2+CO2

CaC2+2H2O→C2H2+Ca(OH)2

C+H2O===CO+H2-----高温

C2H2+H2→C2H4 ----乙炔加成生成乙烯

C2H4可聚合

苯燃烧

2C6H6+15O2→12CO2+6H2O (条件为点燃)

苯和液溴的取代

C6H6+Br2→C6H5Br+HBr

苯和浓硫酸浓硝酸

C6H6+HNO3→C6H5NO2+H2O (条件为浓硫酸)

苯和氢气

C6H6+3H2→C6H12 (条件为催化剂)

乙醇完全燃烧的方程式

C2H5OH+3O2→2CO2+3H2O (条件为点燃)

乙醇的催化氧化的方程式

2CH3CH2OH+O2→2CH3CHO+2H2O(条件为催化剂)(这是总方程式)

乙醇发生消去反应的方程式

CH3CH2OH→CH2=CH2+H2O (条件为浓硫酸 170摄氏度)

两分子乙醇发生分子间脱水

2CH3CH2OH→CH3CH2OCH2CH3+H2O (条件为催化剂浓硫酸 140摄氏度)

乙醇和乙酸发生酯化反应的方程式

CH3COOH+C2H5OH→CH3COOC2H5+H2O

乙酸和镁

Mg+2CH3COOH→(CH3COO)2Mg+H2

乙酸和氧化钙

2CH3COOH+CaO→(CH3CH2)2Ca+H2O

乙酸和氢氧化钠

CH3COOCH2CH3+NaOH→CH3COONa+CH3CH2OH

乙酸和碳酸钠

Na2CO3+2CH3COOH→2CH3COONa+H2O+CO2↑

甲醛和新制的氢氧化铜

HCHO+4Cu(OH)2→2Cu2O+CO2↑+5H2O

乙醛和新制的氢氧化铜

CH3CHO+2Cu→Cu2O(沉淀)+CH3COOH+2H2O

乙醛氧化为乙酸

2CH3CHO+O2→2CH3COOH(条件为催化剂或加温)

烯烃是指含有C=C键的碳氢化合物。属于不饱和烃。烯烃分子通式为CnH2n,非极性分子,不溶或微溶于水。容易发生加成、聚合、氧化反应等。

乙烯的物理性质

通常情况下,无色稍有气味的气体,密度略小比空气,难溶于水,易溶于四氯化碳等有机溶剂。

1) 氧化反应:

①常温下极易被氧化剂氧化。如将乙烯通入酸性KMnO4溶液,溶液的紫色褪去,由此可用鉴别乙烯。

②易燃烧,并放出热量,燃烧时火焰明亮,并产生黑烟。

2) 加成反应:有机物分子中双键(或三键)两端的碳原子与其他原子或原子团直接结合生成新的化合物的反应。

3) 聚合反应:

2.乙烯的实验室制法

(1)反应原理:CH3CH2OH===CH2=CH2↑+H2O (条件为加热,浓H2SO4)

(2)发生装置:选用“液液加热制气体”的反应装置。

(3)收集方法:排水集气法。

(4)注意事项:

①反应液中乙醇与浓硫酸的体积比为1∶3。

②在圆底烧瓶中加少量碎瓷片,目的是防止反应混合物在受热时暴沸。

③温度计水银球应插在液面下,以准确测定反应液温度。加热时要使温度迅速提高到170℃,以减少生成的机会。

④在制取乙烯的反应中,浓硫酸不但是催化剂、吸水剂,也是氧化剂,在反应过程中易将乙醇氧化,最后生成CO2、CO、C等(因此试管中液体变黑),而硫酸本身被还原成SO2。SO2能使溴水或KMnO4溶液褪色。因此,在做乙烯的性质实验前,可以将气体通过NaOH溶液以洗涤除去SO2,得到较纯净的乙烯。

乙炔又称电石气。结构简式HC≡CH,是最简单的炔烃。化学式C2H2

分子结构:分子为直线形的非极性分子。

无色、无味、易燃的气体,微溶于水,易溶于乙醇、丙酮等有机溶剂。

化学性质很活泼,能起加成、氧化、聚合及金属取代等反应。

能使高锰酸钾溶液的紫色褪去。

乙炔的实验室制法:CaC2+2H2O→Ca(OH)2+C2H2↑

化学性质:

(1)氧化反应:

a.可燃性:2C2H2+5O2 → 4CO2+2H2O

现象:火焰明亮、带浓烟 。

b.被KMnO4氧化:能使紫色酸性高锰酸钾溶液褪色。

(2)加成反应:可以跟Br2、H2、HX等多种物质发生加成反应。

现象:溴水褪色或Br2的CCl4溶液褪色

与H2的加成

CH≡CH+H2 → CH2=CH2

与H2的加成

两步反应:C2H2+H2→C2H4

C2H2+2H2→C2H6 (条件为催化剂)

氯乙烯用于制聚氯乙烯

C2H2+HCl→C2H3Cl nCH2=CHCl→=-[-CH2-CHCl-]n- (条件为催化剂)

(3)由于乙炔与乙烯都是不饱和烃,所以化学性质基本相似。金属取代反应:将乙炔通入溶有金属钠的液氨里有氢气放出。乙炔与银氨溶液反应,产生白色乙炔银沉淀.

1、 卤化烃:官能团,卤原子

在碱的溶液中发生“水解反应”,生成醇

在碱的醇溶液中发生“消去反应”,得到不饱和烃

2、 醇:官能团,醇羟基

能与钠反应,产生氢气

能发生消去得到不饱和烃(与羟基相连的碳直接相连的碳原子上如果没有氢原子,不能发生消去)

能与羧酸发生酯化反应

能被催化氧化成醛(伯醇氧化成醛,仲醇氧化成酮,叔醇不能被催化氧化)

3、 醛:官能团,醛基

能与银氨溶液发生银镜反应

能与新制的氢氧化铜溶液反应生成红色沉淀

能被氧化成羧酸

能被加氢还原成醇

4、 酚,官能团,酚羟基

具有酸性

能钠反应得到氢气

酚羟基使苯环性质更活泼,苯环上易发生取代,酚羟基在苯环上是邻对位定位基

能与羧酸发生酯化

5、 羧酸,官能团,羧基

具有酸性(一般酸性强于碳酸)

能与钠反应得到氢气

不能被还原成醛(注意是“不能”)

能与醇发生酯化反应

6、 酯,官能团,酯基

能发生水解得到酸和醇

物质的制取:

实验室制甲烷

CH3COONa+NaOH→Na2CO3+CH4 (条件是CaO 加热)

实验室制乙烯

CH3CH2OH→CH2=CH2↑+H2O (条件为加热,浓H2SO4)

实验室制乙炔

CaC2+2H2O→Ca(OH)2+C2H2↑

工业制取乙醇:

C2H4+H20→CH3CH2OH (条件为催化剂)

乙醛的制取

乙炔水化法:C2H2+H2O→C2H4O(条件为催化剂,加热加压)

乙烯氧化法:2 CH2=CH2+O2→2CH3CHO(条件为催化剂,加热)

乙醇氧化法:2CH3CH2OH+O2→2CH3CHO+2H2O(条件为催化剂,加热)

乙酸的制取

乙醛氧化为乙酸 :2CH3CHO+O2→2CH3COOH(条件为催化剂和加温)

加聚反应:

乙烯聚合

nCH2=CH2→-[-CH2-CH2-]n- (条件为催化剂)

氯乙烯聚合

nCH2=CHCl→-[-CH2-CHCl-]n- (条件为催化剂)

氧化反应:

甲烷燃烧

CH4+2O2→CO2+2H2O(条件为点燃)

乙烯燃烧

CH2=CH2+3O2→2CO2+2H2O(条件为点燃)

乙炔燃烧

C2H2+3O2→2CO2+H2O (条件为点燃)

苯燃烧

2C6H6+15O2→12CO2+6H2O (条件为点燃)

乙醇完全燃烧的方程式

C2H5OH+3O2→2CO2+3H2O (条件为点燃)

乙醇的催化氧化的方程式

2CH3CH2OH+O2→2CH3CHO+2H2O(条件为催化剂)

乙醛的催化氧化:

CH3CHO+O2→2CH3COOH (条件为催化剂加热)

取代反应:有机物分子中的某些原子或原子团被其他原子或原子团所代替的反应叫做取代反应。

甲烷和氯气发生取代反应

CH4+Cl2→CH3Cl+HCl

CH3Cl+Cl2→CH2Cl2+HCl

CH2Cl2+Cl2→CHCl3+HCl

CHCl3+Cl2→CCl4+HCl

(条件都为光照。)

苯和浓硫酸浓硝酸

C6H6+HNO3→C6H5NO2+H2O (条件为浓硫酸)

苯与苯的同系物与卤素单质、浓硝酸等的取代。如:

酚与浓溴水的取代。如:

烷烃与卤素单质在光照下的取代。如:

酯化反应。酸和醇在浓硫酸作用下生成酯和水的反应,其实质是羧基与羟基生成酯基和水的反应。如:

水解反应。水分子中的-OH或-H取代有机化合物中的原子或原子团的反应叫水解反应。

①卤代烃水解生成醇。如:

②酯水解生成羧酸(羧酸盐)和醇。如:

乙酸乙酯的水解:

CH3COOC2H5+H2O→CH3COOH+C2H5OH(条件为无机酸式碱)

加成反应。

不饱和的碳原子跟其他原子或原子团结合生成别的有机物的反应。

乙烯和溴水

CH2=CH2+Br2→CH2Br-CH2Br

乙烯和水

CH2=CH2+H20→CH3CH2OH (条件为催化剂)

乙烯和氯化氢

CH2=H2+HCl→CH3-CH2Cl

乙烯和氢气

CH2=CH2+H2→CH3-CH3 (条件为催化剂)

乙炔和溴水

C2H2+2Br2→C2H2Br4

乙炔和氯化氢

两步反应:C2H2+HCl→C2H3Cl--------C2H3Cl+HCl→C2H4Cl2

乙炔和氢气

两步反应:C2H2+H2→C2H4---------C2H2+2H2→C2H6 (条件为催化剂)

苯和氢气

C6H6+3H2→C6H12 (条件为催化剂)

消去反应。有机分子中脱去一个小分子(水、卤化氢等),而生成不饱和(含碳碳双键或碳碳三键)化合物的反应。

乙醇发生消去反应的方程式

CH3CH2OH→CH2=CH2+H2O (条件为浓硫酸 170摄氏度)

两分子乙醇发生分子间脱水

2CH3CH2OH→CH3CH2OCH2CH3+H2O (条件为催化剂浓硫酸 140摄氏度)

不是很完全,但是基本可以完成 1.一般规则1.1取代基的顺序规则  当主链上有多种取代基时,由顺序规则决定名称中基团的先后顺序。一般的规则是: 1.取代基的第一个原子质量越大,顺序越高; 2.如果第一个原子相同,那么比较它们第一个原子上连接的原子的顺序;如有双键或三键,则视为连接了2或3个相同的原子。 以次序最高的官能团作为主要官能团,命名时放在最后。其他官能团,命名时顺序越低名称越靠前。 1.2主链或主环系的选取  以含有主要官能团的最长碳链作为主链,靠近该官能团的一端标为1号碳。 如果化合物的核心是一个环(系),那么该环系看作母体;除苯环以外,各个环系按照自己的规则确定1号碳,但同时要保证取代基的位置号最小。 支链中与主链相连的一个碳原子标为1号碳。 1.3数词  位置号用阿拉伯数字表示。 官能团的数目用汉字数字表示。 碳链上碳原子的数目,10以内用天干表示,10以外用汉字数字表示。 2.各类化合物的具体规则2.1烷烃  找出最长的碳链当主链,依碳数命名主链,前十个以天干(甲、乙、丙...)代表碳数,碳数多於十个时,以中文数字命名,如:十一烷。 从最近的取代基位置编号:1、2、3...(使取代基的位置数字越小越好)。以数字代表取代基的位置。数字与中文数字之间以 - 隔开。 有多个取代基时,以取代基数字最小且最长的碳链当主链,并依甲基、乙基、丙基的顺序列出所有取代基。 有两个以上的取代基相同时,在取代基前面加入中文数字:一、二、三...,如:二甲基,其位置以 , 隔开,一起列於取代基前面。 2.2烯烃  命名方式与烷类类似,但以含有双键的最长键当作主链。 以最靠近双键的碳开始编号,分别标示取代基和双键的位置。 若分子中出现二次以上的双键,则以“二烯”或“三烯”命名。 烯类的异构体中常出现顺反异构体,故须注明“顺”或”反”。 2.3炔烃  命名方式与烯类类似,但以含有叁键的最长键当作主链。 以最靠近叁键的碳开始编号,分别标示取代基和叁键的位置。 炔类没有环炔类和顺反异构物。 分子中既有双键又有三键时,名字以烯先炔后,分别标注位置号,碳数写在“烯”前面。 2.4卤代烃·醚  卤代烃命名以相应烃作为母体,卤原子作为取代基。 如有碳链取代基,根据顺序规则碳链要写在卤原子的前面;如有多种卤原子,列出次序为氟、氯、溴、碘。 醚的命名以碳链较长的一端为母体,另一端和氧原子合起来作为取代基,称烃氧基。 2.5醇  醇的命名,以含有醇羟基的最长碳链为主链; 由这条链上的碳数决定叫某醇,编号时让醇羟基的位置号尽量小; 其他基团按取代基处理。 主链上有多个醇羟基时,可以按羟基的数目分别称为二醇、三醇等。 2.6醛  醛的命名,以含有醛基的最长的碳链为主链,其他部分作为取代基; 决定名称的碳数包括醛基的一个碳。 如果有多个醛基,则以含有2个醛基的最长碳链为主链,称二醛。 醛基作取代基时称甲酰基(或氧代)。 2.7酮  以含有酮羰基最长的碳链为主链,按此链上的碳数(包括该羰基)称为“某酮”;并把羰基的位置号标在前面,尽量使位置号最小。 如果主链上有多个羰基,可称为二酮、三酮等。 羰基作取代基时称“氧代”。 2.8羧酸  以含有羧基的最长碳链为主链,依照碳数(包括羧基)称为某酸。 主链上有2个羧基时,称为二酸。 2.9羧酸酐  以形成酸酐的酸的名称称呼酸酐,再加“酐”字。 (如:CH3CO-O-CO-C2H5——乙酸丙酸酐) 若形成酸酐的两分子酸相同,直接称为“某酸酐”。 2.10酯  以形成酯的酸和醇的名称命名,称为某酸某(醇)酯或某醇某酸酯。 若有多个醇或酸分子参与成酯,那么要在相应的醇或酸前面加上数目。 2.11胺类  以与氮原子相连的最长碳链为主链,按照该链上的碳原子数称为“某胺”; 若是亚胺,氮原子上的较短烃基视作取代基,命名时称“N-某基”(N表示取代基连在氮上) 2.12脂环烃类  单脂环烃 环烷烃的命名与烷烃类似,直接在烷类前面加“环”字即可。 环烯烃的命名与烯烃类似,编号由双键先设定为 1 , 2 号碳。 桥环烷烃 桥环烷烃中,多个环公用的碳原子称为桥头碳; 给碳原子编号,从一个桥头碳原子开始,依照环由大到小顺序编完所有的碳原子; 命名时,先称环的个数,然后在中括号里标明各个环上桥头碳之间的碳原子的个数,数字之间用点分隔,数字的个数总比环数多一个; 最后,按照环系上碳原子的个数,称为“某烷”。 如: 称为二环[3.2.0]庚烷。 螺环烷烃 螺环烷烃中,两个环公用的一个四级碳原子称为螺原子; 编号从小环开始,1号碳是紧挨螺原子的一个碳原子; 命名时,先称“螺”字,然后在中括号里标明各个环上非螺原子的个数,数字之间用点分隔; 最后,按照环系上碳原子的个数,称为“某烷”。 如: 称为螺[3.5]壬烷。 多环烯、炔烃 按照多环烷烃的规则命名,编号时尽量使重键的位置号最小,再把“烷”字换成“烯”或“炔”即可。 2.13芳香族化合物  苯环系 苯的卤代物、烷基代物等,先称呼取代基的位置号和名称,再加“苯”字。甲基、乙基等简单烷基的“基”字可以省去。(如:1,2-二甲苯) 苯的烯、炔、醇、醛、酮、羧酸、磺酸、胺基代物等,以取代基的原形作为母体,先称“苯”(表示苯基),再称取代基的原形,编号时以取代基为主链,苯环为支链,与取代基相连的碳为1号碳。(如:苯乙烯) 芳烃的羟基代物称为酚,对于苯来说是苯酚。苯环上直接连有两个羟基时叫苯二酚。 其他环系 各种芳环系都有不同的名字,其取代物的命名方法和苯环类似。但这些环系一般都固定了编号的顺序(而不是像苯环一样只由取代基决定): 萘环系 蒽环系 等等。 2.14杂环化合物  把杂环看作碳环中碳原子被杂原子替换而形成的环,称为“某杂(环的名称)”;(如:氧杂环戊烷) 给杂原子编号,使杂原子的位置号尽量小。 其他官能团视为取代基。 3.参阅1.带支链烷烃  主链 选碳链最长、带支链最多者。 编号 按最低系列规则。从*侧链最近端编号,如两端号码相同时,则依次比较下一取代基位次,最先遇到最小位次定为最低系统(不管取代基性质如何)。 2,3,5-三甲基己烷,不叫2,4,5-三甲基己烷,因2,3,5与2,4,5对比是最低系列。 取代基次序IUPAC规定依英文名第一字母次序排列。我国规定采用立体化学中“次序规则”:优先基团放在后面,如第一原子相同则比较下一原子。 2-甲基-3-乙基戊烷,因—CH2CH3>—CH3,故将—CH3放在前面。 2.单官能团化合物  主链 选含官能团的最长碳链、带侧链最多者,称为某烯(或炔、醇、醛、酮、酸、酯、……)。卤代烃、硝基化合物、醚则以烃为母体,以卤素、硝基、烃氧基为取代基,并标明取代基位置。 编号 从*近官能团(或上述取代基)端开始,按次序规则优先基团列在后面。 3.多官能团化合物  (1)脂肪族 选含官能团最多(尽量包括重键)的最长碳链为主链。官能团词尾取法习惯上按下列次序, —OH>—NH2(=NH)>C≡C>C=C 如烯、炔处在相同位次时则给双键以最低编号。 (2)脂环族、芳香族 如侧链简单,选环作母体;如取代基复杂,取碳链作主链。 (3)杂环 从杂原子开始编号,有多种杂原子时,按O、S、N、P顺序编号。 别看晕了

谁知道甲醇.乙酰氯.二氯甲烷的性质具体点

高考化学知识点归纳

Ⅰ、基本概念与基础理论:

一、阿伏加德罗定律

1.内容:在同温同压下,同体积的气体含有相同的分子数。即“三同”定“一同”。

2.推论

(1)同温同压下,V1/V2=n1/n2 (2)同温同体积时,p1/p2=n1/n2=N1/N2

(3)同温同压等质量时,V1/V2=M2/M1 (4)同温同压同体积时,M1/M2=ρ1/ρ2

注意:①阿伏加德罗定律也适用于不反应的混合气体。②使用气态方程PV=nRT有助于理解上述推论。

3、阿伏加德罗常这类题的解法:

①状况条件:考查气体时经常给非标准状况如常温常压下,1.01×105Pa、25℃时等。

②物质状态:考查气体摩尔体积时,常用在标准状况下非气态的物质来迷惑考生,如H2O、SO3、已烷、辛烷、CHCl3等。

③物质结构和晶体结构:考查一定物质的量的物质中含有多少微粒(分子、原子、电子、质子、中子等)时常涉及希有气体He、Ne等为单原子组成和胶体粒子,Cl2、N2、O2、H2为双原子分子等。晶体结构:P4、金刚石、石墨、二氧化硅等结构。

二、离子共存

1.由于发生复分解反应,离子不能大量共存。

(1)有气体产生。如CO32-、SO32-、S2-、HCO3-、HSO3-、HS-等易挥发的弱酸的酸根与H+不能大量共存。

(2)有沉淀生成。如Ba2+、Ca2+、Mg2+、Ag+等不能与SO42-、CO32-等大量共存;Mg2+、Fe2+、Ag+、Al3+、Zn2+、Cu2+、Fe3+等不能与OH-大量共存;Pb2+与Cl-,Fe2+与S2-、Ca2+与PO43-、Ag+与I-不能大量共存。

(3)有弱电解质生成。如OH-、CH3COO-、PO43-、HPO42-、H2PO4-、F-、ClO-、AlO2-、SiO32-、CN-、C17H35COO-、 等与H+不能大量共存;一些酸式弱酸根如HCO3-、HPO42-、HS-、H2PO4-、HSO3-不能与OH-大量共存;NH4+与OH-不能大量共存。

(4)一些容易发生水解的离子,在溶液中的存在是有条件的。如AlO2-、S2-、CO32-、C6H5O-等必须在碱性条件下才能在溶液中存在;如Fe3+、Al3+等必须在酸性条件下才能在溶液中存在。这两类离子不能同时存在在同一溶液中,即离子间能发生“双水解”反应。如3AlO2-+3Al3++6H2O=4Al(OH)3↓等。

2.由于发生氧化还原反应,离子不能大量共存。

(1)具有较强还原性的离子不能与具有较强氧化性的离子大量共存。如S2-、HS-、SO32-、I-和Fe3+不能大量共存。

(2)在酸性或碱性的介质中由于发生氧化还原反应而不能大量共存。如MnO4-、Cr2O7-、NO3-、ClO-与S2-、HS-、SO32-、HSO3-、I-、Fe2+等不能大量共存;SO32-和S2-在碱性条件下可以共存,但在酸性条件下则由于发生2S2-+SO32-+6H+=3S↓+3H2O反应不能共在。H+与S2O32-不能大量共存。

3.能水解的阳离子跟能水解的阴离子在水溶液中不能大量共存(双水解)。

例:Al3+和HCO3-、CO32-、HS-、S2-、AlO2-、ClO-等;Fe3+与CO32-、HCO3-、AlO2-、ClO-等不能大量共存。

4.溶液中能发生络合反应的离子不能大量共存。

如Fe2+、Fe3+与SCN-不能大量共存;Fe3+与 不能大量共存。

5、审题时应注意题中给出的附加条件。

①酸性溶液(H+)、碱性溶液(OH-)、能在加入铝粉后放出可燃气体的溶液、由水电离出的H+或OH-=1×10-10mol/L的溶液等。

②有色离子MnO4-,Fe3+,Fe2+,Cu2+,Fe(SCN)2+。 ③MnO4-,NO3-等在酸性条件下具有强氧化性。

④S2O32-在酸性条件下发生氧化还原反应:S2O32-+2H+=S↓+SO2↑+H2O

⑤注意题目要求“大量共存”还是“不能大量共存”。

6、审题时还应特别注意以下几点:

(1)注意溶液的酸性对离子间发生氧化还原反应的影响。如:Fe2+与NO3-能共存,但在强酸性条件下(即Fe2+、NO3-、H+相遇)不能共存;MnO4-与Cl-在强酸性条件下也不能共存;S2-与SO32-在钠、钾盐时可共存,但在酸性条件下则不能共存。

(2)酸式盐的含氢弱酸根离子不能与强碱(OH-)、强酸(H+)共存。

如HCO3-+OH-=CO32-+H2O(HCO3-遇碱时进一步电离);HCO3-+H+=CO2↑+H2O

三、离子方程式书写的基本规律要求

(1)合事实:离子反应要符合客观事实,不可臆造产物及反应。

(2)式正确:化学式与离子符号使用正确合理。

(3)号实际:“=”“ ”“→”“↑”“↓”等符号符合实际。

(4)两守恒:两边原子数、电荷数必须守恒(氧化还原反应离子方程式中氧化剂得电子总数与还原剂失电子总数要相等)。

(5)明类型:分清类型,注意少量、过量等。

(6)检查细:结合书写离子方程式过程中易出现的错误,细心检查。

四、氧化性、还原性强弱的判断

(1)根据元素的化合价

物质中元素具有最高价,该元素只有氧化性;物质中元素具有最低价,该元素只有还原性;物质中元素具有中间价,该元素既有氧化性又有还原性。对于同一种元素,价态越高,其氧化性就越强;价态越低,其还原性就越强。

(2)根据氧化还原反应方程式

在同一氧化还原反应中,氧化性:氧化剂>氧化产物

还原性:还原剂>还原产物

氧化剂的氧化性越强,则其对应的还原产物的还原性就越弱;还原剂的还原性越强,则其对应的氧化产物的氧化性就越弱。

(3)根据反应的难易程度

注意:①氧化还原性的强弱只与该原子得失电子的难易程度有关,而与得失电子数目的多少无关。得电子能力越强,其氧化性就越强;失电子能力越强,其还原性就越强。

②同一元素相邻价态间不发生氧化还原反应。

常见氧化剂:

①、活泼的非金属,如Cl2、Br2、O2 等;

②、元素(如Mn等)处于高化合价的氧化物,如MnO2、KMnO4等

③、元素(如S、N等)处于高化合价时的含氧酸,如浓H2SO4、HNO3 等

④、元素(如Mn、Cl、Fe等)处于高化合价时的盐,如KMnO4、KClO3、FeCl3、K2Cr2O7

⑤、过氧化物,如Na2O2、H2O2等。

有机化学总复习知识要点一览

一、 碳原子的成键原则

1、 饱和碳原子与手性碳原子;2、不饱和碳原子;3、苯环上的碳原子。

应用①利用“氢1,氧2,氮3,碳4”原则分析有机物的键线式或球棍模型;

②利用“手性碳原子”的特点分析有机物结构中的手性碳原子或书写含手性碳原子的有机物结构。

二、 官能团的重要性质

1、 C=C:①加成(H2、X2或HX、H2O);②加聚(单聚、混聚);③氧化

延生

2、 C≡C:

3、 :①取代(卤代,硝化,磺化);②加成(H2)

延生①引入氨基:先引入 (还原剂是Fe +HCl)

②引入羟基:先引入

③引入烃基:

④引入羧基:先引入烃基

4、R—X:

5、醇羟基:

多个羟基遇Cu(OH)2溶液呈绛蓝色

6、酚羟基:

①与Na,NaOH,Na2CO3反应

2 —OH+2Na→2 —ONa +H2↑

—OH +NaOH→ —ONa +H2O

—OH +Na2CO3→ —ONa +NaHCO3

注意酚与NaHCO3不反应。

—ONa —OH +NaHCO3(NaHSO3,Na+)

②苯酚在苯环上发生取代反应(卤代,硝化,磺化)的位置:邻位或对位。

③酚与醛发生缩聚反应的位置:邻位或对位。

检验遇浓溴水产生白色浑浊或遇FeCl3溶液显紫色;

7、醛基:

氧化与还原

检验①银镜反应;②与新制的Cu(OH)2悬浊液共热。

8、羧基:

① 与Na,NaOH,Na2CO3,NaHCO3溶液反应

② 酯化反应:

③ 酰胺化反应 R—COOH+H2N—R/→R—CO—NH—R/+H2O

9、酯基:

水解

R—CO—O— + 2NaOH→RCOONa+ —ONa

延生醇解

10、肽键:水解

应用 ①定性分析:官能团 性质;

常见的实验现象与相应的结构:

(1) 遇溴水或溴的CCl4溶液褪色:C═C或C≡C;

(2) 遇FeCl3溶液显紫色:酚;

(3) 遇石蕊试液显红色:羧酸;

(4) 与Na反应产生H2:含羟基化合物(醇、酚或羧酸);

(5) 与Na2CO3或NaHCO3溶液反应产生CO2:羧酸;

(6) 与Na2CO3溶液反应但无CO2气体放出:酚;

(7) 与NaOH溶液反应:酚、羧酸、酯或卤代烃;

(8) 发生银镜反应或与新制的Cu(OH)2悬浊液共热产生红色沉淀:醛;

(9) 常温下能溶解Cu(OH)2:羧酸;

(10) 能氧化成羧酸的醇:含“—CH2OH”的结构(能氧化的醇,羟基相“连”的碳原子上含有氢原子;能发生消去反应的醇,羟基相“邻”的碳原子上含有氢原子);

(11) 能水解:酯、卤代烃、二糖和多糖、酰胺和蛋白质;

(12) 既能氧化成羧酸又能还原成醇:醛;

②定量分析:由反应中量的关系确定官能团的个数;

常见反应的定量关系:

(1)与X2、HX、H2的反应:取代(H~X2);加成(C═C~X2或HX或H2;C≡C~2X2或2HX或2H2; ~3H2)

(2)银镜反应:—CHO~2Ag;(注意:HCHO~4Ag)

(3)与新制的Cu(OH)2反应:—CHO~2Cu(OH)2;—COOH~ Cu(OH)2

(4)与钠反应:—OH~ H2

(5)与NaOH反应:一个酚羟基~NaOH;一个羧基~NaOH;一个醇酯~NaOH;一个酚酯~2NaOH;

R—X~NaOH; ~2NaOH。

③官能团的引入:

(1) 引入C—C:C═C或C≡C与H2加成;

(2) 引入C═C或C≡C:卤代烃或醇的消去;

(3) 苯环上引入

(4) 引入—X:①在饱和碳原子上与X2(光照)取代;②不饱和碳原子上与X2或HX加成;③醇羟基与HX取代。

(5) 引入—OH:①卤代烃水解;②醛或酮加氢还原;③C═C与H2O加成。

(6) 引入—CHO或酮:①醇的催化氧化;②C≡C与H2O加成。

(7) 引入—COOH:①醛基氧化;②—CN水化;③羧酸酯水解。

(8) 引入—COOR:①醇酯由醇与羧酸酯化;②酚酯由酚与羧酸酐酯化。

(9) 引入高分子:①含C═C的单体加聚;②酚与醛缩聚、二元羧酸与二元醇(或羟基酸)酯化缩聚、二元羧酸与二元胺(或氨基酸)酰胺化缩聚。

三、 同分异构体

1、 概念辨别(五“同”:同位素、同素异形体、同分异构体、同系物、等同结构);

2、 判断取代产物种类(“一”取代产物:对称轴法;“多”取代产物:一定一动法;数学组合法);

3、 基团组装法; 4、残基分析法; 5、缺氢指数法。

四、 单体的聚合与高分子的解聚

1、 单体的聚合:

(1) 加聚:①乙烯类或1,3—丁二烯类的 (单聚与混聚);②开环聚合;

(2) 缩聚:①酚与醛缩聚→酚醛树脂;②二元羧酸与二元醇或羟基酸酯化缩聚→聚酯;③二元羧酸与二元胺或氨基酸酰胺化缩聚→聚酰胺或蛋白质;

2、 高分子的解聚:

(1) 加聚产物→“翻转法” (2) 缩聚产物→“水解法”

五、 有机合成

1、 合成路线:

2、 合成技巧:

六、 有机反应基本类型

1、取代;2、加成;3、消去;4、氧化或还原;5、加聚或缩聚。

七、 燃烧规律

(1)气态烃在温度高于100℃时完全燃烧,若燃烧前后气体的体积不变,则该烃的氢原子数为4;

若为混合烃,则氢原子的平均数为4,可分两种情况:①按一定比例,则一种烃的氢原子数小于4,另一种烃的氢原子数大于4;②任意比例,则两种烃的氢原子数都等于4。

(2)烃或烃的含氧衍生物

CxHy或CxHyOz 耗氧量相等 生成CO2量相等

生成H2O量相等

等质量 最简式相同 含碳量相同 含氢量相同

等物质的量 等效分子式 碳原子数相同 氢原子数相同

注释:“等效分子式”是指等物质的量的两种有机物耗氧量相同,如:

CxHy与CxHy(CO2)m(H2O)n或CxHy(CO2)a(H2O)b

推论:①最简式相同的两种有机物,总质量一定,完全燃烧,耗氧量一定,生成的CO2量一定,生成的水的量也一定;

② 含碳量相同的两种有机物,总质量一定,则生成的CO2的量也一定;

③ 含氢量相同的两种有机物,总质量一定,则生成的水的量也一定;

④ 两种分子式等效的有机物,总物质的量一定,完全燃烧,耗氧量一定;

⑤ 两种有机物碳原子数相同,则总物质的量一定,生成的CO2的量也一定;

⑥ 两种有机物氢原子数相同,则总物质的量一定,生成的水的量也一定。

有机实验的八项注意

有机实验是中学化学教学的重要内容,是高考会考的常考内容。对于有机实验的操作及复习必须注意以下八点内容。

1.注意加热方式

有机实验往往需要加热,而不同的实验其加热方式可能不一样。

⑴酒精灯加热。 酒精灯的火焰温度一般在400~500℃,所以需要温度不太高的实验都可用酒精灯加热。教材中用酒精灯加热的有机实验是:“乙烯的制备实验”、“乙酸乙酯的制取实验”“蒸馏石油实验”和“石蜡的催化裂化实验”。

⑵酒精喷灯加热。酒精喷灯的火焰温度比酒精灯的火焰温度要高得多,所以需要较高温度的有机实验可采用酒精喷灯加热。教材中用酒精喷灯加热的有机实验是:“煤的干馏实验”。

⑶水浴加热。水浴加热的温度不超过100℃。教材中用水浴加热的有机实验有:“银镜实验(包括醛类、糖类等的所有的银镜实验)”、“ 硝基苯的制取实验(水浴温度为6 0℃)”、“ 酚醛树酯的制取实验(沸水浴)”、“乙酸乙酯的水解实验(水浴温度为70℃~80℃)”和“ 糖类(包括二糖、 淀粉和纤维素等)水解实验(热水浴)”。

⑷用温度计测温的有机实验有:“硝基苯的制取实验”、“乙酸乙酯的制取实验”(以上两个实验中的温度计水银球都是插在反应液外的水浴液中,测定水浴的温度)、“乙烯的实验室制取实验”(温度计水银球插入反应液中,测定反应液的温度)和“ 石油的蒸馏实验”(温度计水银球应插在具支烧瓶支管口处, 测定馏出物的温度)。

2、注意催化剂的使用

⑴ 硫酸做催化剂的实验有:“乙烯的制取实验”、 “硝基苯的制取实验”、“乙酸乙酯的制取实验”、“纤维素硝酸酯的制取实验”、“糖类(包括二糖、淀粉和纤维素)水解实验”和“乙酸乙酯的水解实验”。

其中前四个实验的催化剂为浓硫酸,后两个实验的催化剂为稀硫酸,其中最后一个实验也可以用氢氧化钠溶液做催化剂

⑵铁做催化剂的实验有:溴苯的制取实验(实际上起催化作用的是溴与铁反应后生成的溴化铁)。

⑶氧化铝做催化剂的实验有:石蜡的催化裂化实验。

3、注意反应物的量

有机实验要注意严格控制反应物的量及各反应物的比例,如“乙烯的制备实验”必须注意乙醇和浓硫酸的比例为1:3,且需要的量不要太多,否则反应物升温太慢,副反应较多,从而影响了乙烯的产率。

4、注意冷却

有机实验中的反应物和产物多为挥发性的有害物质,所以必须注意对挥发出的反应物和产物进行冷却。

⑴需要冷水(用冷凝管盛装)冷却的实验:“蒸馏水的制取实验”和“石油的蒸馏实验”。

⑵用空气冷却(用长玻璃管连接反应装置)的实验:“硝基苯的制取实验”、“酚醛树酯的制取实验”、“乙酸乙酯的制取实验”、“石蜡的催化裂化实验”和 “溴苯的制取实验”。

这些实验需要冷却的目的是减少反应物或生成物的挥发,既保证了实验的顺利进行,又减少了这些挥发物对人的危害和对环境的污染。

5、注意除杂

有机物的实验往往副反应较多,导致产物中的杂质也多,为了保证产物的纯净,必须注意对产物进行净化除杂。如“乙烯的制备实验”中乙烯中常含有CO2和SO2等杂质气体,可将这种混合气体通入到浓碱液中除去酸性气体;再如“溴苯的制备实验”和“硝基苯的制备实验”,产物溴苯和硝基苯中分别含有溴和NO2,因此, 产物可用浓碱液洗涤。

6、注意搅拌

注意不断搅拌也是有机实验的一个注意条件。如“浓硫酸使蔗糖脱水实验”(也称“黑面包”实验)(目的是使浓硫酸与蔗糖迅速混合,在短时间内急剧反应,以便反应放出的气体和大量的热使蔗糖炭化生成的炭等固体物质快速膨胀)、“乙烯制备实验”中醇酸混合液的配制。

7、注意使用沸石(防止暴沸)

需要使用沸石的有机实验:⑴ 实验室中制取乙烯的实验; ⑵石油蒸馏实验。

8、注意尾气的处理

有机实验中往往挥发或产生有害气体,因此必须对这种有害气体的尾气进行无害化处理。

⑴如甲烷、乙烯、乙炔的制取实验中可将可燃性的尾气燃烧掉;⑵“溴苯的制取实验”和“硝基苯的制备实验”中可用冷却的方法将有害挥发物回流。

有机化学中常见误区剖析

--------------------

1、误认为有机物均易燃烧。

如四氯化碳不易燃烧,而且是高效灭火剂。

2、误认为二氯甲烷有两种结构。

因为甲烷不是平面结构而是正四面体结构,故二氯甲烷只有一种结构。

3、误认为碳原子数超过4的烃在常温常压下都是液体或固体。

新戊烷是例外,沸点9.5℃,气体。

4、误认为可用酸性高锰酸钾溶液去除甲烷中的乙烯。

乙烯被酸性高锰酸钾氧化后产生二氧化碳,故不能达到除杂目的,必须再用碱石灰处理。

5、误认为双键键能小,不稳定,易断裂。

其实是双键中只有一个键符合上述条件。

6、误认为烯烃均能使溴水褪色。

如癸烯加入溴水中并不能使其褪色,但加入溴的四氯化碳溶液时却能使其褪色。因为烃链越长越难溶于溴水中与溴接触。

7、误认为聚乙烯是纯净物。

聚乙烯是混合物,因为它们的相对分子质量不定。

8、误认为乙炔与溴水或酸性高锰酸钾溶液反应的速率比乙烯快。

大量事实说明乙炔使它们褪色的速度比乙烯慢得多。

9、误认为块状碳化钙与水反应可制乙炔,不需加热,可用启普发生器。

由于电石和水反应的速度很快,不易控制,同时放出大量的热,反应中产生的糊状物还可能堵塞球形漏斗与底部容器之间的空隙,故不能用启普发生器。

10、误认为甲烷和氯气在光照下能发生取代反应,故苯与氯气在光照(紫外线)条件下也能发生取代。

苯与氯气在紫外线照射下发生的是加成反应,生成六氯环己烷。

11、误认为苯和溴水不反应,故两者混合后无明显现象。

虽然二者不反应,但苯能萃取水中的溴,故看到水层颜色变浅或褪去,而苯层变为橙红色。

12、误认为用酸性高锰酸钾溶液可以除去苯中的甲苯。

甲苯被氧化成苯甲酸,而苯甲酸易溶于苯,仍难分离。应再用氢氧化钠溶液使苯甲酸转化为易溶于水的苯甲酸钠,然后分液。

13、误认为石油分馏后得到的馏分为纯净物。

分馏产物是一定沸点范围内的馏分,因为混合物。

14、误认为用酸性高锰酸钾溶液能区分直馏汽油和裂化汽油。

直馏汽油中含有较多的苯的同系物;两者不能用酸性高锰酸钾鉴别。

15、误认为卤代烃一定能发生消去反应。

16、误认为烃基和羟基相连的有机物一定是醇类。

苯酚是酚类。

17、误认为苯酚是固体,常温下在水中溶解度不大,故大量苯酚从水中析出时产生沉淀,可用过滤的方法分离。

苯酚与水能行成特殊的两相混合物,大量苯酚在水中析出时,将出现分层现象,下层是苯酚中溶有少量的水的溶液,上层相反,故应用分液的方法分离苯酚。

18、误认为乙醇是液体,而苯酚是固体,苯酚不与金属钠反应。

固体苯酚虽不与钠反应,但将苯酚熔化,即可与钠反应,且比乙醇和钠反应更剧烈。

19、误认为苯酚的酸性比碳酸弱,碳酸只能使紫色石蕊试液微红,于是断定苯酚一定不能使指示剂变色。

“酸性强弱”≠“酸度大小”。饱和苯酚溶液比饱和碳酸的浓度大,故浓度较大的苯酚溶液能使石蕊试液变红。

20、误认为苯酚酸性比碳酸弱,故苯酚不能与碳酸钠溶液反应。

苯酚的电离程度虽比碳酸小,但却比碳酸氢根离子大,所以由复分解规律可知:苯酚和碳酸钠溶液能反应生成苯酚钠和碳酸氢钠。

21、误认为欲除去苯中的苯酚可在其中加入足量浓溴水,再把生成的沉淀过滤除去。

苯酚与溴水反应后,多余的溴易被萃取到苯中,而且生成的三溴苯酚虽不溶于水,却易溶于苯,所以不能达到目的。

22、误认为苯酚与溴水反应生成三溴苯酚,甲苯与硝酸生成TNT,故推断工业制取苦味酸(三硝基苯酚)是通过苯酚的直接硝化制得的。

此推断忽视了苯酚易被氧化的性质。当向苯酚中加入浓硝酸时,大部分苯酚被硝酸氧化,产率极低。工业上一般是由二硝基氯苯经先硝化再水解制得苦味酸。

23、误认为只有醇能形成酯,而酚不能形成酯。

酚类也能形成对应的酯,如阿司匹林就是酚酯。但相对于醇而言,酚成酯较困难,通常是与羧酸酐或酰氯反应生成酯。

24、误认为醇一定可发生去氢氧化。

本碳为季的醇不能发生去氢氧化,如新戊醇。

25、误认为饱和一元醇被氧化一定生成醛。

当羟基与叔碳连接时被氧化成酮,如2-丙醇。

26、误认为醇一定能发生消去反应。

甲醇和邻碳无氢的醇不能发生消去反应。

27、误认为酸与醇反应生成的有机物一定是酯。

乙醇与氢溴酸反应生成的溴乙烷属于卤代烃,不是酯。

28、误认为酯化反应一定都是“酸去羟基醇去氢”。

乙醇与硝酸等无机酸反应,一般是醇去羟基酸去氢。

29、误认为凡是分子中含有羧基的有机物一定是羧酸,都能使石蕊变红。

硬脂酸不能使石蕊变红。

30、误认为能使有机物分子中引进硝基的反应一定是硝化反应。

乙醇和浓硝酸发生酯化反应,生成硝酸乙酯。

31、误认为最简式相同但分子结构不同的有机物是同分异构体。

例:甲醛、乙酸、葡萄糖、甲酸甲酯(CH2O);乙烯、苯(CH)。

32、误认为相对分子质量相同但分子结构不同的有机物一定是同分异构体。

例:乙烷与甲醛、丙醇与乙酸相对分子质量相同且结构不同,却不是同分异构体。

33、误认为相对分子质量相同,组成元素也相同,分子结构不同,这样的有机物一定是同分异构体。

例:乙醇和甲酸。

34、误认为分子组成相差一个或几个CH2原子团的物质一定是同系物。

例:乙烯与环丙烷。

35、误认为能发生银镜反应的有机物一定是醛或一定含有醛基。

葡萄糖、甲酸、甲酸某酯可发生银镜反应,但它们不是醛;果糖能发生银镜反应,但它是多羟基酮,不含醛基。

常见有机物 鉴别 除杂 制取 高一的要 最好有整理好的 万分感激

二氯甲烷国标编号 61552

CAS 登录号 75-09-2

EINECS 登录号 200-838-9

中文名称 二氯甲烷

英文名称 Dichloromethane;Methylenechloride;Methylene dichloride

别 名 二叉二氯

分子式 CH2Cl2;H2CCl2 外观与性状 无色透明易挥发液体。具有类似醚的刺激性气味

分子量 84.94

沸点:39.8℃

蒸汽压 30.55kPa(10℃)

熔 点 -95.1℃

相对密度1.3266(20/4℃)

水溶性 20 G/L (20 ?C)

自燃点640℃。

粘度(20℃)0.43mPa·s。

折射率nD(20℃)1.4244。

临界温度237℃,

临界压力6.0795MPa。

溶解性 溶于约50倍的水,溶于酚、醛、酮、冰醋酸、磷酸三乙酯、乙酰乙酸乙酯、环己胺。与其他氯代烃溶剂乙醇、和N,N-二甲基甲酰胺混溶

热解后产生HCl和痕量的光气,与水长期加热,生成甲醛和HCl。进一步氯化,可得CHCl3和CCl4。无色易挥发液体。难燃烧。蒸气与空气形成爆炸性混合物,爆炸极限6.2%~15.0%(体积)。二氯甲烷与氢氧化钠作用生成甲醛。工业中,二氯甲烷由天然气与氯气反应制得,经过精馏得到纯品,是优良的有机溶剂,常用来代替易燃的石油醚、等,并可用作牙科局部、制冷剂和灭火剂等。对皮肤和粘膜的刺激性比氯仿稍强,使用高浓度二氯甲烷时应注意。

包装储运 用镀锌铁桶密闭包装,每桶250kg,火车槽车、汽车均可运输。应贮存在冷暗干燥、通风良好的地方,注意防潮。

危险标记 15(有害品) 主要用途 用作树脂及塑料工业的溶剂 [编辑本段]2、对环境的影响  该物质对环境可能有危害,在地下水中有蓄积作用。对水生生物应给特别注意。还应注意对大气的污染。

一、健康危害

侵入途径:吸入、食入、经皮吸收。

健康危害:本品有麻醉作用,主要损害中枢神经和呼吸系统。人类接触的主要途径是吸入。已经测得,在室内的生产环境中,当使用二氯甲烷作除漆剂时,有高浓度的二氯甲烷存在。一般人群通过周围空气、饮用水和食品的接触,剂量要低得多。据估计,在二氯甲烷的世界产量中,大约80%被释放到大气中去,但是由于该化合物光解的速率很快,使之不可能在大气中蓄积。其初始降解产物为光气和一氧化碳,进而再转变成二氧化碳和盐酸。当二氯甲烷存在于地表水中时,其大部分将蒸发。有氧存在时,则易于生物降解,因而生物蓄积似乎不大可能。但对其在土壤中的行为尚须测定。

二、毒理学资料及环境行为

毒性:经口属中等毒性。

急性毒性:LD501600~2000mg/kg(大鼠经口);LC5056.2g/m3,8小时(小鼠吸入);小鼠吸入67.4g/m3×67分钟,致;人经口20~50ml,轻度中毒;人经口100~150ml,致;人吸入2.9~4.0g/m3,20分钟后眩晕。

亚急性和慢性毒性:大鼠吸入4.69g/m3,8小时/天,75天,无病理改变。暴露时间增加,有轻度肝萎缩、脂肪变性和细胞浸润。

致突变性:微生物致突变:鼠伤寒沙门氏菌5700ppm。DNA 抑制:人成纤维细胞5000ppm/小时(连续)。

生殖毒性:大鼠吸入最低中毒浓度(TCL0)1250ppm(7小时,孕6~15天),引起肌肉骨骼发育异常,泌尿生殖系统发育异常。

致癌性:IARC致癌性评论:动物阳性,人类不明确。关于病人是否应把二氯甲烷视为动物和人的致癌物,动物实验数据和人类流行病学数据尚不充分。然而,鉴于最近在对大鼠和小鼠的吸入研究中的发现,且这些数据在任务组会议之后已可加以应用,故应将二氯甲烷视为一种对人类潜在的致癌物。

危险特性:遇明火高热可燃。受热分解能发出剧毒的光气。若遇高热,容器内压增大,有开裂和爆炸的危险。

燃烧(分解)产物:一氧化碳、二氧化碳、氯化氢、光气。 [编辑本段]3、现场应急监测方法  便携式气相色谱法;水质检测管法;气体检测管法

气体速测管(德国德尔格公司产品) [编辑本段]4、实验室监测方法  监测方法 来源 类别

气相色谱法 《空气中有害物质的测定方法》(第二版),杭士平主编 空气

吹扫捕集-气相色谱法 中国环境监测总站 水质

气相色谱法 《固体废弃物试验与分析评价手册》中国环境监测总站等译 固体废弃物

气相色谱法 《城市和工业废水中有机化合物分析》王克欧等译 废水

色谱/质谱法 美国EPA524.2方法 水质 [编辑本段]5、环境标准  前苏联 车间空气中有害物质的最高容许浓度 50mg/m3

中国(待颁布) 饮用水源中有害物质的最高容许浓度 0.02mg/L

中国(GHZB1-1999) 地表水环境质量标准(I、II、III类水域) 0.005mg/L

前苏联(1975) 水体中有害物质最高允许浓度 7.5mg/L

日本(1993) 环境标准(mg/L) 地面水:0.002

废水:0.02

土壤浸出液:0.002

嗅觉阈浓度 150ppm [编辑本段]6、应急处理处置方法  一、泄漏应急处理

迅速撤离泄漏污染区人员至安全区,度进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式下水道、排洪沟等限制性空间。小量泄漏:用砂土或勘察不烯材料吸附或吸收。大量泄漏:构筑围堤或控坑收容;用泡沫覆盖,降低蒸气灾害。用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

废弃物处置方法:建议用焚烧法处置。废料同其他燃料混合后焚烧,燃烧要充分,防止生成光气。焚烧炉排气中的氮氧化物通过酸洗涤器除去。

二、防护措施

呼吸系统防护:空气中浓度超标时,应该柚戴直接式防毒面具(半面罩)。紧急事态抢救或撤离时,佩戴空气呼吸器。

眼睛防护:必要时,戴化学安全防护眼镜。

身体防护:穿防毒物渗透工作服。

手防护:戴防化学品手套。

其它:工作现场禁止吸烟、进食和饮水。工作毕,沐浴更衣。单独存放被污染的衣服,洗后备用。注意个人清洁卫生。

三、急救措施

皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。

眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

食入:饮足量温水,催吐,就医。

灭火方法:雾状水、砂土、泡沫、二氧化碳。 [编辑本段]7、制得方法  1、天然气氯化法

氯气 100% 4000

天然气(标准状况下) 甲烷含量97% 1000m3/t

液碱 100% 274

2、氯甲烷氯化法

氯甲烷 ≥98% 746

液氯 ≥99.5% 854

烧碱 30% 221甲醇 Methanol

甲醇系结构最为简单的饱和一元醇,化学式CH3OH。又称“木醇”或“木精”。是无色有酒精气味易挥发的液体。有毒,误饮5~10毫升能双目失明,大量饮用会导致亡。甲醇易燃,其蒸气与空气能形成爆炸混合物,甲醇完全燃烧生成二氧化碳和水蒸气,同时放出热量。方程式:2CH3OH+3O2=2CO2+4H2O 工业制法和储备工业上用一氧化碳和氢气的混合气(合成气)在一定的条件下制备甲醇。

甲醇可用做溶剂和燃料,也是一种化工原料,主要用于生产甲醛。甲醇分子中,碳原子以sp3杂化轨道成键,氧原子以sp3杂化轨道成键,为极性子。主要参数见下:

IUPAC英文名MethanolCAS号67-56-1RTECS号PC1400000SMILESCO化学式CH3OH摩尔质量32.04 g/mol外观无色液体密度0.7918 g/cm?熔点–97 ℃(176K)沸点64.7 ℃ (337K)在水中的溶解度互溶酸解离常数~ 15.5黏度0.59 mPa·s(20 ℃)分子偶极矩1.69 D(g)危险性警示性质标准词R11,R23/24/25,R39/23/24/25安全建议标准词S1/2,S7,S16,S36/37,S45闪点11 ℃[编辑本段]理化性质  甲醇的锯架投影式 甲醇是一种无色、透明、易燃、易挥发的有毒液体,常温下对金属无腐蚀性(铅、铝除外),略有酒精气味。分子量32.04,相对密度0.792(20/4℃),熔点-97.8℃,沸点64.5℃,闪点12.22℃,自燃点463.89℃,蒸气密度1.11,蒸气压13.33KPa(100mmHg 21.2℃),蒸气与空气混合物爆炸极限6~36.5 %(体积比),能与水、乙醇、、苯、酮、卤代烃和许多其他有机溶剂相混溶,遇热、明火或氧化剂易燃烧。燃烧反应式为:

CH3OH + O2 → CO2 + H2O。 [编辑本段]用途 甲醇用途广泛,是基础的有机化工原料和优质燃料。主要应用于精细化工,塑料等领域,用来制造甲醛、醋酸、氯甲烷、甲氨、硫酸二甲酯等多种有机产品,也是农药、医药的重要原料之一。甲醇在深加工后可作为一种新型清洁燃料,也加入汽油掺烧。 [编辑本段]制法  甲醇 甲醇的生产,主要是合成法,尚有少量从木材干馏作为副产回收。合成的化学反应式为:

2H2 + CO → CH3OH

合成甲醇可以固体(如煤、焦炭)液体(如原油、重油、轻油)或气体(如天然气及其他可燃性气体)为原料,经造气净化(脱硫)变换,除去二氧化碳,配制成一定的合成气(一氧化碳和氢)。在不同的催化剂存在下,选用不同的工艺条件。单产甲醇(分高压法低压和中压法),或与合成氨联产甲醇(联醇法)。将合成后的粗甲醇,经预精馏脱除甲醚,精馏而得成品甲醇。高压法为BASF最先实现工业合成的方法,但因其能耗大,加工复杂,材质要求苛刻,产品中副产物多,今后将由ICI低压和中压法及Lurgi低压和中压法取代。 [编辑本段]健康危害 甲醇被大众所熟知,是因为其毒性。工业酒精中大约含有4%的甲醇,被不法分子当作食用酒精制作假酒,而被人饮用后,就会产生甲醇中毒。甲醇的致命剂量大约是70毫升。

甲醇有较强的毒性,对人体的神经系统和血液系统影响最大,它经消化道、呼吸道或皮肤摄入都会产生毒性反应,甲醇蒸气能损害人的呼吸道粘膜和视力。急性中毒症状有:头疼、恶心、胃痛、疲倦、视力模糊以至失明,继而呼吸困难,最终导致呼吸中枢麻痹而亡。慢性中毒反应为:眩晕、昏睡、头痛、耳鸣、现力减退、消化障碍。甲醇摄入量超过4克就会出现中毒反应,误服一小杯超过10克就能造成双目失明,饮入量大造成亡。致量为30毫升以上,甲醇在体内不易排出, 会发生蓄积,在体内氧化生成甲醛和甲酸也都有毒性。在甲醇生产工厂,我国有关部门规定,空气中允许甲醇浓度为50mg/m3,在有甲醇气的现场工作须戴防毒面具,废水要处理后才能排放,允许含量小于200mg/L。

甲醇的中毒机理是,甲醇经人体代谢产生甲醛和甲酸(俗称蚁酸),然后对人体产生伤害。常见的症状是,先是产生喝醉的感觉,数小时后头痛,恶心,呕吐,以及视线模糊。严重者会失明,乃至丧命。失明的原因是,甲醇的代谢产物甲酸会累积在眼睛部位,破坏视觉神经细胞。脑神经也会受到破坏,产生永久性损害。甲酸进入血液后,会使组织酸性越来越强,损害肾脏导致肾衰竭。

甲醇中毒,通常可以用乙醇解毒法。其原理是,甲醇本身无毒,而代谢产物有毒,因此可以通过抑制代谢的方法来解毒。甲醇和乙醇在人体的代谢都是同一种酶,而这种酶和乙醇更具亲和力。因此,甲醇中毒者,可以通过饮用烈性酒(酒精度通常在60度以上)的方式来缓解甲醇代谢,进而使之排出体外。而甲醇已经代谢产生的甲酸,可以通过服用小苏打(碳酸氢钠)的方式来中和。

泄漏应急处理

迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。不要直接接触泄漏物。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 [编辑本段]甲醇汽油 甲醇汽油是指把甲醇部分添加在汽油里,用甲醇燃料助溶剂复配的M系列混合燃料。其中:M15(在汽油里添加15%甲醇)清洁甲醇汽油为车用燃料,分别应用于各种汽油发动机,可以在不改变现行发动机结构的条件下,替代成品汽油使用,并可与成品油混用。甲醇混合燃料的热效率、动力性、启动性、经济性良好,具有降低排放、节省石油、安全方便等特点。世界各国根据不同国情,研发了M3、M5、M15、M20、M50、M85、M100等不同掺和比的甲醇汽油。目前,商用甲醇主要为M85(85%甲醇+15%汽油)和 M100,M100性能优于M85,具有更大的环境优越性。 [编辑本段]甲醇工业 甲醇生产过程比较简单,原料来源多样,煤、石脑油和天然气均可制甲醇。甲醇用途广泛,它的下游产品多达几百种。近年来由于世界各国环保意识的加强,特别是美国国会于1990年11月15日通过清洁空气法修正案以后,甲醇的身价备增,全球甲醇的需求增长加快。

中国甲醇产业发展速度丝毫不逊于任何一国,仅靠最近5年的快速发展,中国甲醇产量就跃居全球首位。

但是,正如正在发育期的孩子一样,只是个头高并不能证明就是身体健康。相反,过高的个头可能还是一种病态。

甲醇属低附加值化工产品。低成本是该类产品竞争的核心,也是生产企业采取的重要竞争战略,是企业安身立命的关键。低成本需要优化各种影响产品成本的生产要素,包括原料价格、工艺路线、融资成本、装置规模和物流费用。 

成本

200美元/吨PK80美元/吨

国内外甲醇工业现状

 

目前国内甲醇装置规模普遍较小,且多采用煤头路线,以煤为原料的约占到78%;单位产能投资高,约为国外大型甲醇装置投资的2倍,导致财务费用和折旧费用高。这些都影响成本。据了解,我国有近200家甲醇生产企业,但其中10万吨/年以上的装置却只占20%,最大的甲醇生产装置产能也就是60万吨/年,其余80%都是10万吨/年以下的装置。根据这样的装置格局,业内普遍估计,目前我国甲醇生产成本大约在1400元~1800元/吨(约200美元/吨)。一旦出现市场供过于求的局面,国内甲醇价格有可能要下跌到约2000元/吨,甚至更低。这对产能规模小、单位产能投资较高的国内大部分甲醇生产企业来讲会压力剧增。

而以中东和中南美洲为代表的国外甲醇装置普遍规模较大。目前国际上最大规模的甲醇装置产能已达到170万吨/年。2008年4月底,沙特甲醇公司170万吨/年的巨型甲醇装置在阿尔朱拜勒投产,使得该公司5套大型甲醇装置的总产能达到480万吨/年。国外企业装置规模大,公用设施分摊投资就少,且采用天然气路线,单位产能投资大幅下降,成本竞争力大为增强。据石油和化工规划院分析,目前国外天然气产地在建的大型甲醇生产装置成本只有60~80美元/吨。

不仅如此,国外大型甲醇装置多以天然气为原料,采用天然气两段转化或自热转化技术,包括德国鲁奇公司、丹麦托普索公司、英国卜内门化工公司和日本三菱公司等企业的技术。相对煤基甲醇技术,天然气转化技术成熟可靠,转化规模受甲醇规模影响较小,装置紧凑,占地面积小。尽管近年来国际市场天然气价格也在上涨,但国外甲醇生产企业依靠长期供应协议将价格影响因素降至最低。

而我国大部分甲醇生产以煤为原料,气化装置规模有限和占地面积大的先天缺陷制约着甲醇生产装置向大型化发展。同时近年来煤炭价格的大幅度上涨对本来还具有一定成本优势的煤基甲醇产生较大影响,再加上煤基甲醇大多建在西部地区,运输费用较高。种种因素进一步削弱了煤基甲醇的价格竞争力。

国外大型甲醇装置集中投产后,传统的销售渠道无法消化骤然增多的甲醇。2010年之前,国外甲醇以低价冲击中国市场几无悬念。

产品能耗:60吉焦/吨PK30吉焦/吨

现实是:国外甲醇生产规模大,技术先进,管理严格,能耗低,产品质量稳定;国内大甲醇装置的产品质量已经达到国际水平,但许多小甲醇或联醇装置产品质量尚不稳定。

据全国化学工程技术委员会副主任、中石化宁波工程有限公司副总工程师唐宏青介绍,国内煤基甲醇每吨产品能耗为50~60吉焦,耗煤1.6吨左右,耗水22~30吨。以天然气为原料生产的甲醇每吨产品能耗约为40吉焦,耗天然气900~1150立方米,耗水16~20吨。我国小型联醇装置每吨产品耗能则高达70吉焦。而国外大型甲醇装置基本都以天然气为原料,并且每吨产品能耗只有25~30吉焦,耗天然气760~920立方米,耗水10~15吨。

另外,由于我国甲醇生产大多采用煤基路线,酸性气体和灰渣排放量较大,需投入较多资金建设环保处理设施。而国外以天然气为原料的大型甲醇装置,基本属于清洁生产,对环境影响较小,环保投入也相应较小。

运输成本:55美元/吨PK25美元/吨

许多业内专家都向记者提到了国内甲醇生产的一个先天不足:我国甲醇生产所需原料煤炭、天然气主要集中在经济较落后、交通不便的西部,而我国甲醇市场消费中心在华东和华南地区。西部甲醇运到华东和华南地区需铁路或公路的长途运输,运输费用最高达400元/吨(约55美元/吨)。甲醇产地与消费地相距较远,导致交通运输成为今后我国甲醇发展的主要瓶颈。

而大甲醇装置集中的中东和中南美洲地区,同时也是世界上天然气资源最为丰富的地区,资源地和甲醇生产装置与沿海地区距离较近,生产装置紧靠甲醇装运码头,甲醇产品全部采用海路运输,运输方便。据统计,从中东、中南美洲和澳洲地区将甲醇运到亚洲主港地每吨产品的运费只有25美元左右,运输费用较低。

而且,在物流方面,即使条件好的国内甲醇企业也仅有厂内储运和铁路装运设施,国内目前还没有全国性更没有世界性的甲醇中转运输基地,没有甲醇大型专用运输工具。而国外甲醇生产商大多在世界各地建有大型甲醇中转基地和储运设施,拥有自己或长期租用的甲醇运输船队。

投资模式:单打独斗PK合作运营

如果谈到国内甲醇生产的后天不足,业内专家认为主要是目前国内甲醇装置建设大多是独资企业,少有合资合作。这对于动辙投资上百亿元的甲醇及下游产品项目来说,无疑加大了融资难度和投资风险。

而国外甲醇装置大多为合资合作建设与运营。一般股东构成包括投资商、专利商、销售商和资源供应商等,且投资商和股东委托专业资产管理公司协助运营。这样便能有效解决融资问题,降低资金成本和投资风险,并在技术、原料供应和产品销售等方面得到保证,最大限度地优化各种生产要素,提高项目竞争力。

营销模式:自行销售PK专业销售商

据正智远东公司调查,尽管我国已成为最主要的甲醇生产国,但目前国内甲醇生产企业还属内向型企业,产品几乎全部面向国内市场,建设项目的市场分析和决策几乎也全部依赖于国内市场,出口量微乎其微,根本无暇顾及到国际市场上的需求和变化。 乙酰氯  Acetyl Chloride [CH3COCl=78.50]

本品为无色液体;有刺激性臭气;能发烟,易燃;对皮肤及黏膜有强刺激性;遇水

或乙醇引起剧烈分解。在氯仿、、苯、石油醚或冰醋酸中溶解。

1.物质的理化常数:

国标编号 32119

CAS号 75-36-5

中文名称 乙酰氯

英文名称 acetyl chloride;ethanoyl chloride

别 名 氯乙酰;氯(化)乙酰

分子式 C2H3ClO;CH3CClO 外观与性状 无色发烟液体,有强烈刺激性气味

分子量 78.50 蒸汽压 12.1kPa/0℃ 闪点:4℃

熔 点 -112℃ 沸点:51℃ 溶解性 溶于丙酮、醚、乙酸

密 度 相对密度(水=1)1.11;相对密度(空气=1)2.70 稳定性 稳定

危险标记 7(易燃液体),20(腐蚀品) 主要用途 用于有机化合物、染料及药品的制造

2.对环境的影响:

一、健康危害

侵入途径:吸入、食入、经皮吸收。

健康危害:本品对上呼吸道有刺激性,吸入后引起咳嗽、胸痛。口服引起口腔及消化道灼伤。

二、毒理学资料及环境行为

急性毒性:LC50910mg/ kg(大鼠经口)

刺激性:20mg,重度刺激。家兔经皮开放性刺激试验:500mg,轻度刺激。

危险特性:易燃,其蒸气与空气可形成爆炸性混合物。遇明火、高热能引起燃烧爆炸。在空气中受热分解释出剧毒的光气和氯化氢气体。遇水、水蒸气或乙醇剧烈反应甚至爆炸。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。

燃烧(分解)产物:一氧化碳、二氧化碳、氯化氢、光气。

3.现场应急监测方法:

4.实验室监测方法:

在NN-二甲基甲酰胺中用EDTA电导滴定卤化物和酰基卤的测定[刊,日]/Yoshimura C.;Hasegawa T.//日本化学会志.-1986,(6).-775~779 《分析化学文摘 》1988.1.

5.环境标准:

6.应急处理处置方法:

一、泄漏应急处理

迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。不要直接接触泄漏物。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂土、干燥石灰或苏打灰混合。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

二、防护措施

呼吸系统防护:可能接触其蒸气时,必须佩戴过滤式防毒面具(全面罩)或自给式呼吸器。紧急事态抢救或撤离时,建议佩戴氧气呼吸器。

眼睛防护:呼吸系统防护中已作防护。

身体防护:穿胶布防毒衣。

手防护:戴橡胶手套。

其它:工作现场禁止吸烟、进食和饮水。工作毕,淋浴更衣。保持良好的卫生习惯。

三、急救措施

皮肤接触:立即脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。就医。

眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

食入:误服者用水漱口,给饮牛奶或蛋清。就医。

灭火方法:二氧化碳、干粉、1211灭火剂、砂土。禁止用水或泡沫灭火。

甲烷

甲烷分子式CH4。最简单的有机化合物。甲烷是没有颜色、没有气味的气体,沸点-161.4℃,比空气轻,它是极难溶于水的可燃性气体。甲烷和空气成适当比例的混合物,遇火花会发生爆炸。化学性质相当稳定,跟强酸、强碱或强氧化剂(如KMnO4)等一般不起反应。在适当条件下会发生氧化、热解及卤代等反应。

甲烷在自然界分布很广,是天然气、沼气、坑气及煤气的主要成分之一。它可用作燃料及制造氢、一氧化碳、炭黑、乙炔、氢氰酸及甲醛等物质的原料。

413kJ/mol、109°28′,甲烷分子是正四面体空间构型,上面的结构式只是表示分子里各原子的连接情况,并不能真实表示各原子的空间相对位置。

甲烷对人基本无毒,但浓度过高时,使空气中氧含量明显降低,使人窒息。当空气中甲烷达25%-30%时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速、共济失调。若不及时脱离,可致窒息亡。皮肤接触液化本品,可致冻伤。

烯烃

烯烃是指含有C=C键(碳-碳双键)(烯键)的碳氢化合物。属于不饱和烃,分为链烯烃与环烯烃。按含双键的多少分别称单烯烃、二烯烃等。

链单烯烃分子通式为CnH2n,常温下C2—C5为气体,是非极性分子,不溶或微溶于水。双键基团是烯烃分子中的功能基团,具有反应活性,可发生氢化、卤化、水合、卤氢化、次卤酸化、硫酸酯化、环氧化、聚合等加成反应,还可氧化发生双键的断裂,生成醛、羧酸等。

可由卤代烷与氢氧化钠反应制得:

RCH2CH2X + NaOH —— RHC=CH2 + NaX + H2O (X为氯、溴、碘)

也可由醇失水或由邻二卤代烷与锌反应制得。小分子烯烃主要来自石油裂解气。环烯烃在植物精油中存在较多,许多可用作香料。 烯类是有机合成中的重要基础原料,用于制聚烯烃和合成橡胶。

炔烃

炔烃是一种有机化合物。属于不饱和烃。其官能团为碳碳三键(C≡C)。通式为CnH2n-2简单的炔烃化合物有乙炔(C2H2),丙炔(C3H4)等。因为乙炔在燃烧时放出大量的热,炔常被用来做焊接时的原料。

乙炔用电石和水制取。

CaC2+H2O→C2H2+CaO

最简单的芳烃。分子式C6H6。为有机化学工业的基本原料之一。无色、易燃、有特殊气味的液体。熔点5.5℃,沸 点80.1℃,相对密度0.8765 (20/4℃)。在水中的溶解度很小,能与乙醇、、二硫化碳等有机溶剂混溶。能与水生成恒沸混合物,沸点为69.25℃,含苯 91.2%。因此,在有水生成的反应中常加苯蒸馏,以将水带出。苯在燃烧时产生浓烟。苯是一种无色、具有特殊芳香气味的液体,能与醇、醚、丙酮和四氯化碳互溶,微溶于水。苯具有易挥发、易燃的特点,其蒸气有爆炸性。经常接触苯,皮肤可因脱脂而变干燥,脱屑,有的出现过敏性湿疹。长期吸入苯能导致再生障碍性贫血。

卤代反应

反应过程中,卤素分子在苯和催化剂的共同作用下异裂,X+进攻苯环,X-与催化剂结合。

以溴为例:反应需要加入铁粉,铁在溴作用下先生成三溴化铁。

在工业上,卤代苯中以氯和溴的取代物最为重要。

硝化反应

苯和硝酸在浓硫酸作催化剂的条件下可生成硝基苯

硝化反应是一个强烈的放热反应,很容易生成一取代物,但是进一步反应速度较慢。

磺化反应

用浓硫酸或者发烟硫酸在较高温度下可以将苯磺化成苯磺酸。

苯环上引入一个磺酸基后反应能力下降,不易进一步磺化,需要更高的温度才能引入第二、第三个磺酸基。这说明硝基、磺酸基都是钝化基团,即妨碍再次亲电取代进行的基团。

烷基化反应

在AlCl3催化下苯环上的氢原子可以被烷基(烯烃)取代生成烷基苯,这种反应称为烷基化反应,又称为傅-克烷基化反应。例如与乙烯烷基化生成乙苯

在反应过程中,R基可能会发生重排:如1-氯丙烷与苯反应生成异丙苯,这是由于自由基总是趋向稳定的构型。

加成反应

苯环虽然很稳定,但是在一定条件下也能够发生双键的加成反应。通常经过催化加氢,镍作催化剂,苯可以生成环己烷。

此外由苯生成六氯环己烷(六六六)的反应可以在紫外线照射的条件下,由苯和氯气加成而得。

氧化反应

苯和其他的烃一样,都能燃烧。当氧气充足时,产物为二氧化碳和水。

但是在一般条件下,苯不能被强氧化剂所氧化。但是在氧化钼等催化剂存在下,与空气中的氧反应,苯可以选择性的氧化成顺丁烯二酸酐。这是屈指可数的几种能破坏苯的六元碳环系的反应之一。(马来酸酐是五元杂环。)

这是一个强烈的放热反应。

卤代烃

halohydrocarbon

烃分子中的氢原子被卤素(氟、氯、溴、碘)取代后生成的化合物。

命名根据取代卤素的不同,分别称为氟代烃、氯代烃、溴代烃和碘代烃;也可根据分子中卤素原子的多少分为一卤代烃、二卤代烃和多卤代烃;也可根据烃基的不同分为饱和卤代烃、不饱和卤代烃和芳香卤代烃等。此外,还可根据与卤原子直接相连碳原子的不同,分为一级卤代烃RCH2X、二级卤代烃R2CHX和三级卤代烃 R3CX。

性质 基本上与烃相似,低级的是气体或液体,高级的是固体。它们的沸点随分子中碳原子和卤素原子数目的增加(氟代烃除外)和卤素原子序数的增大而升高。

卤代烷中的卤素容易被—OH、—OR、—CN、NH3或H2NR取代,生成相应的醇、醚、腈、胺等化合物。

其分子通式为CnH2n+1 OH

alcohols

烃分子中一个或几个氢被羟基取代而生成的一类有机化合物。芳香烃的环上的氢被羟基取代而生成的化合物不属醇类而属酚类。

一般醇为无色液体或固体,含碳原子数低于12的一元正碳醇是液体,12或更多的是固体,多元醇(如甘油)是糖浆状物质。一元醇溶于有机溶剂,三个碳以下的醇溶于水。低级醇的熔点和沸点比同碳原子数的烃高得多,这是由于醇分子中有氢键存在,发生缔合作用。

当有机醇中的羟基被巯基取代时,可称为硫醇,结构通式如图,可称为硫醇.硫醇的化学性质与醇有很多相似之处,醇与醇能生成醚,同样,硫醇与硫醇生成的是硫醚.

在铜催化和加热的条件下脱2H生成醛(链端)或酮(链中)

醛的通式为R-CHO,-CHO为醛基。

醛基是羰基(-CO-)和一个氢连接而成的基团。

醛的反应老考,有银镜反应、有和新制氢氧化铜反应出砖红色沉淀等,都是被氧化生成有机酸。

有机酸

有机酸类 (Organic acids)是分子结构中含有羧基(一COOH)的化合物。

有酸的通性。

可以和醇或酚类酯化。

酚(phenol),通式为ArOH,是芳香烃环上的氢被羟基(—OH)取代的一类芳香族化合物。最简单的酚为苯酚。

分类

依分子中羟基数分为一元酚、二元酚及多元酚;

羟基在萘环上的称为萘酚,在蒽环上称为蒽酚。

酸性

与普通的醇不同,由于受到芳香环的影响,酚上的羟基(酚羟基)有弱酸性,酸性比醇羟基强。

如苯酚(C6H5OH)自身在水中的电离:

酚可与强碱生成酚盐,如苯酚钠。

易被氧化

在空气中无色的晶体酚易被氧化为红色或粉红色的醌。

配合物

酚在溶液中与三氯化铁可形成配合物,并呈现蓝紫色,可以鉴定三氯化铁或酚。

反应

酚羟基的邻对位易发生各种亲电取代反应;

酚羟基可发生烷基化及酰基化反应。

制备

酚一般可由芳烃磺化后经碱熔融制得;

酚也可由卤代芳烃与碱在高温高压催化下反应制得;

芳香伯胺经重氮盐水解也可制得酚。

七、有机反应类型与对应物质类别

1.取代反应

(1)定义:

有机物分子里的某些原子或原子团被其他原子或原子团所代替的反应。

(2)能发生取代反应的物质:

①烷烃:光照条件下与X2取代;

②芳香烃:Fe(FeX3)条件下与X2发生苯环上的取代;与浓硝酸浓硫酸在50~60℃水浴下的硝化反应;与浓硫酸在70~80℃水浴条件下的磺化反应;在光照下与X2发生烷基上的取代;

③醇:与HX取代;与含氧酸酯化;分子间脱水;

注:醇与钠的反应归入置换反应。

④酚:与浓溴水生成2,4,6-三溴苯酚;与浓硝酸生成2,4,6-三硝基苯酚;

注:液态酚与钠的反应仍属于置换反应。

⑤酯:酯的水解;

⑥羧酸:羧酸的酯化反应;

⑦卤代烃:与NaOH溶液共热水解。

(3)典型反应

CH4+Cl2 →CH3Cl+HCl

CH3CH2OH+HBr→ CH3CH2Br+H2O

CH3CH2OH+HOCH2CH3→ CH3CH2OCH2CH3

2.加成反应

(1)定义:

有机物分子里不饱和的碳原子跟其他原子或原子团直接结合生成别的物质。

(2)能发生加成反应的物质,包括含C=C、C C、-CHO、羰基、苯环的物质,具体如下:

①烯烃:与H2、X2、HX、H2O、HCN等加成;

②炔烃:与H2、X2、HX、H2O、HCN等加成;

③苯及同系物:与H2在Ni催化下加成、与Cl2在紫外光下加成;

④醛:与HCN、H2等;

⑤酮:H2;

⑥还原性糖:H2;

⑦油酸、油酸盐、油酸某酯、油(不饱和高级脂肪酸甘油酯)的加成:H2、H2O、X2等;

⑧不饱和烃的衍生物,如卤代烯烃、卤代炔烃、烯醇、烯醛、烯酸、烯酸酯、烯酸盐等等。

说明:

一般饱和羧酸、饱和酯不发生加成反应。

(3)典型反应

CH2=CH2+Br2→CH2Br—CH2Br

3.加聚反应

(1)定义:

通过加成聚合反应形成高分子化合物。

(2)特征:①是含C=C双键物质的性质。②生成物只有高分子化合物。

(3)能发生加聚反应的物质:烯、二烯、含C=C的其他类物质。

4.缩聚反应

(1)定义: 通过缩合(缩去HX、H2O、NH3等)反应生成高分子化合物的反应。

(2)特征:生成高分子化合物和小分子物质。

(3)能发生缩聚反应的物质

①苯酚与甲醛 ②二元醇与二元酸 ③羟基羧酸 ④氨基酸 ⑤葡萄糖

说明:

(1)加聚反应与缩聚反应,是合成高分子化合物的两大反应,但区别很大。

(2)加聚反应是由不饱和的单体聚合成高分子的反应,其产物只有一种高分子化合物。

(3)参加缩聚反应的单体一般含有两种或两种以上能相互作用的官能团(或两个或两个以上易断裂的共价键)的化合物,产物中除一种高分子化合物外,还生成有小分子.如H2O、HCl、NH3等。链节的组成与参加反应的任何一种单体均不相同。

(4)从反应机理上看,加聚反应是不饱和分子中的双键发生的,实质还是加成反应。双键是发生加聚反应的内因。缩聚反应是通过单体中的官能团相互作用经缩合生成小分子,同时又聚合成大分子的双线反应。发生缩聚反应的内因是相互能作用的官能团(或较活动的原子)。

(5)发生加聚反应的单体不一定是一种物质。也可以是两种或两种以上。如丁苯橡胶就是由单体1,3—丁二烯和苯乙烯加聚而成,缩聚反应的单体不一定就是两种,也有一种的,如单糖缩聚成多糖、氨基酸缩聚成多肽,也可以是两种以上的。

5.消去反应

(1)定义:

从一个有机分子中脱去小分子(如H2O,HX等),而生成不饱和化合物(含双键或叁键)的反应。

(2)能发生消去反应的物质:醇、卤代烃。

(3)典型反应

6.氧化反应

(1)含义:有机物去H或加O的反应.

(2)类型:

①在空气或氧气中燃烧。

②在催化剂存在时被氧气氧化。如:

③有机物被某些非O2的氧化剂氧化。包括:

a.能被酸性KMnO4氧化的是含C=C、C C、-CHO及部分含-OH的物质,具体包括:

烯、炔、二烯、油脂(含C=C)、苯的同系物、酚、醛、葡萄糖、部分醇等。

说明:

饱和的羧酸、饱和的酯一般不能被酸性高锰酸钾氧化。

b.能被银氨溶液或新制备的Cu(OH)2悬浊液氧化的是含-CHO的物质,包括:

醛类、甲酸及甲酸酯、甲酸盐、葡萄糖、麦芽糖。

RCHO+2Cu(OH)2 RCOOH+Cu2O↓+2H2O

7.还原反应

(1)含义:有机物加H去O的反应。

(2)类型:含C=C、C C、-CHO、羰基、苯环的物质,包括:

烯、二烯、炔、芳香族化合物、油脂、醛、甲酸及其盐和酯、酮、葡萄糖、麦芽糖等。如:

8.酯化反应(属于取代反应)

(1)定义:酸跟醇起作用,生成酯和水的反应。

(2)能发生酯化反应的物质:羧酸与醇、无机含氧酸与醇、无机含氧酸与纤维素。

(3)典型反应

9.水解反应(属于取代反应)

(1)反应特征:有水参加反应,有机物分解成较小的分子。

(2)能够水解的物质:碳化钙等、

CH3COOC2H5+NaOH CH3COONa+CH3CH2OH

注:

其他水解的物质有CaC2、Al2S3、弱酸根、弱碱的阳离子等。举例如下:

CaC2+2H2O Ca(OH)2↓+H2O

Al2S3+6H2O=2Al(OH)3↓+3H2S↑

Fe3++3H2O Fe(OH)3+3H+

CO32-+H2O HCO3-+OH-

10. 其它反应

①有机物跟钠反应

②碳化

③氨基酸的两性

④低聚合:

八、常见有机物的鉴别

鉴别是根据化合物的不同性质来确定其含有什么官能团,是哪种化合物。如鉴别一组化合物,就是分别确定各是哪种化合物即可。在做鉴别题时要注重,并不是化合物的所有化学性质都可以用于鉴别,必须具备一定的条件:

(1) 化学反应中有颜色变化

(2) 化学反应过程中伴随着明显的温度变化(放热或吸热)

(3) 反应产物有气体产生

(4) 反应产物有沉淀生成或反应过程中沉淀溶解、产物分层等。

现将各类有机化合物的鉴别方法归纳总结如下:

一.各类化合物的鉴别方法

1.烯烃、二烯、炔烃:

(1)溴的四氯化碳溶液,红色腿去

(2)高锰酸钾溶液,紫色腿去。

2.含有炔氢的炔烃:

(1) 硝酸银,生成炔化银白色沉淀

(2) 氯化亚铜的氨溶液,生成炔化亚铜红色沉淀。

3.小环烃:三、四元脂环烃可使溴的四氯化碳溶液腿色

4.卤代烃:

硝酸银的醇溶液,生成卤化银沉淀;不同布局的卤代烃生成沉淀的速度不同,叔卤代烃和烯丙式卤代烃最快,仲卤代烃次之,伯卤代烃需加热才出现沉淀。

5.醇:

(1) 与金属钠反应放出氢气(鉴别6个碳原子以下的醇);

(2) 用卢卡斯试剂鉴别伯、仲、叔醇,叔醇马上变浑浊,仲醇放置后变浑浊,伯醇放置后也无变化。

6.酚或烯醇类化合物:

(1) 用三氯化铁溶液产生颜色(苯酚产生兰紫色)。

(2) 苯酚与溴水生成三溴苯酚白色沉淀。

7.羰基化合物:

(1) 鉴别所有的醛酮:2,4-二硝基苯肼,产生**或橙红色沉淀;

(2) 不同醛与酮用托伦试剂,醛可以生成银镜,而酮不可以;

(3) 不同芳香醛与脂肪醛或酮与脂肪醛,用斐林试剂,脂肪醛生成砖红色沉淀,而酮和芳香醛不可以;

(4) 鉴别甲基酮和具有布局的醇,用碘的氢氧化钠溶液,生成**的碘仿沉淀。

8.甲酸:用托伦试剂,甲酸可以生成银镜,而其他酸不可以。

9.胺:不同伯、仲、叔胺有两种方法

(1)用苯磺酰氯或对甲苯磺酰氯,在NaOH溶液中反应,伯胺生成的产物溶于NaOH;仲胺生成的产物不溶于NaOH溶液;叔胺不发生反应。

(2)用NaNO2 HCl:

脂肪胺:伯胺放出氮气,仲胺生成**油状物,叔胺不反应。

芳香胺:伯胺生成重氮盐,仲胺生成**油状物,叔胺生成绿色固体。

10.糖:

(1) 单糖都可以与托伦试剂和斐林试剂作用,产生银镜或砖红色沉淀;

(2) 葡萄糖与果糖:用溴水可不同葡萄糖与果糖,葡萄糖可以使溴水褪色,而果糖不可以。

(3)麦芽糖与蔗糖:用托伦试剂或斐林试剂,麦芽糖可生成银镜或砖红色沉淀,而蔗糖不可以。

可以使溴水和酸性高锰酸钾溶液褪色的有机物

1.使溴水褪色的有机物有:

(1)不饱和烃(烯、炔、二烯、苯乙烯等); (2)不饱和烃的衍生物(烯醇、烯醛等);

(3)石油产品(裂化气、裂解气、裂化石油等);(4)苯酚(生成白色沉淀)。(5)天然橡胶;

2.因萃取使溴水褪色的物质有:

(1)密度小于1的溶剂(液态饱和烃、直馏汽油、苯及其同系物、液态环烷烃、液态饱和酯)。

(2)密度大于1的溶剂(四氯化碳、氯仿、溴苯、二硫化碳等);

3.使酸性高锰酸钾溶液褪色的有机物有:

(1)不饱和烃;(2)苯的同系物;(3)不饱和烃的衍生物;(4)含醛基的有机物:醛、甲酸、甲酸酯、甲酸盐;(5)石油产品(裂解气、裂化气、裂化石油);(6)天然橡胶。