原料药pde-原料药符合ep和符合cep的区别是什么

一、证明:∵∠BPE=∠BCE=Rt∠,∴四边形BPCE内接于圆,

∴∠BEP=∠BCP=45°,∴∠EBP=45°,∴PB=PE;

连结BD交AC于点O,∵∠OBP+∠OPB=Rt∠,∠FPE+∠OPB=Rt∠,∴∠OBP=∠FPE,

在Rt△BOP和Rt△PFE中,∵∠BOP=∠PFE、∠OBP=∠FPE、PB=EP,

∴Rt△BOP≌Rt△PFE中,∴BO=PF,即在P的运动过程中,PF恒等于BO;

二、当E在DC延长线上时,一、中结论仍成立;

三、设△PEC中,CP=CE,∴∠CPE=∠CEP,

∵已证∠CPE=∠OBP,∠OBP+45°=∠ABP,

∵已证四边形BECP内接于圆,∠CEP+45°=∠CEB=∠APB,∴∠ABP=∠APB,AB=AP,

即当AP=AB时,△PEC中为等腰三角形,解毕。

EP∥AB, ∴∠A=∠CEP=65°

FP∥AC,∴∠BFP=∠A=65°

PD⊥AB,∴∠FPD+∠BFP=90°,∴∠FPD=90°-65°=25°

四边形AEPF是平行四边形,根据平行四边形性质可知,AE=PF。