原料药pde-原料药符合ep和符合cep的区别是什么
一、证明:∵∠BPE=∠BCE=Rt∠,∴四边形BPCE内接于圆,
∴∠BEP=∠BCP=45°,∴∠EBP=45°,∴PB=PE;
连结BD交AC于点O,∵∠OBP+∠OPB=Rt∠,∠FPE+∠OPB=Rt∠,∴∠OBP=∠FPE,
在Rt△BOP和Rt△PFE中,∵∠BOP=∠PFE、∠OBP=∠FPE、PB=EP,
∴Rt△BOP≌Rt△PFE中,∴BO=PF,即在P的运动过程中,PF恒等于BO;
二、当E在DC延长线上时,一、中结论仍成立;
三、设△PEC中,CP=CE,∴∠CPE=∠CEP,
∵已证∠CPE=∠OBP,∠OBP+45°=∠ABP,
∵已证四边形BECP内接于圆,∠CEP+45°=∠CEB=∠APB,∴∠ABP=∠APB,AB=AP,
即当AP=AB时,△PEC中为等腰三角形,解毕。
EP∥AB, ∴∠A=∠CEP=65°
FP∥AC,∴∠BFP=∠A=65°
PD⊥AB,∴∠FPD+∠BFP=90°,∴∠FPD=90°-65°=25°
四边形AEPF是平行四边形,根据平行四边形性质可知,AE=PF。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。